Sistem Monitoring Kesehatan Dalam Penentuan Kondisi Tubuh Dengan Metode Fuzzy Mamdani

Sanyyah Plowerita, Ade Silvia Handayani, Irawan Hadi, Nyayu Latifah Husni

Abstract


In this study, designing a health monitoring system with an Android-based Application of Health Detector (AHD) application. The data displayed is an input for multi-sensor readings from the detection of body health. From the detected health, it will provide a determination of the body's health condition, using the fuzzy mandani algorithm. The variables calculated were age, gender, heart rate, body temperature, systolic blood pressure, diastolic blood pressure, and blood oxygen levels. The stages of the fuzzy mamdani method in determining body health conditions include the formation of fuzzy sets, application of implications functions, and composition of rules. From the results of this study, it was found that the age factor affects health conditions. Older people tend to have indications of health conditions, only some of them have indicated health conditions, and almost all of them have healthy health conditions. The level of accuracy of the fuzzy mamdani method in this study was 85.18%. This is because in this study many variables are used which causes many rules to be made so that they are prone to errors.


Keywords


Algorithm, Body Health, Fuzzy Mamdani, and Health Detection

References


R. S. Kusuma, M. Pamungkasty, F. S. Akbaruddin, and U. Fadlilah, “PROTOTIPE ALAT MONITORING KESEHATAN JANTUNG BERBASIS IoT,” Emit. J. Tek. Elektro, vol. 18, no. 2, pp. 18–22, 2018, doi: 10.23917/emitor.v18i2.6353.

P. Studi et al., “RANCANG BANGUN MONITORING DETAK JANTUNG ( HEART RATE ) SEBAGAI INDIKATOR KESEHATAN BERBASIS INTERNET OF THINGS ( IOT ) Design and Build Monitoring Heart Rate As An Indicator Of Health Based.”

N. Ahmed, M. Ajmal, M. Hai, A. Khuzema, and M. Tariq, “Real Time Monitoring of Human Body Vital Signs using Bluetooth and WLAN,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 10, pp. 210–216, 2016, doi: 10.14569/ijacsa.2016.071028.

P. . Puspitaningayu, A. . Widodo, and E. . Yundra, “Wireless Body Area Networks dan Pengaruhnya dalam Perkembangan Teknologi m-Health,” Ina. Indones. J. Electr. Eletronics Eng., vol. 1, no. 1, p. 24, 2018, doi: 10.26740/inajeee.v1n1.p24-30.

R. Srinivasan and E. Kannan, “A review on energy efficient routing protocols in wireless sensor networks,” Int. J. Appl. Eng. Res., vol. 10, no. 11, pp. 27701–27715, 2015, doi: 10.26634/jwcn.4.4.5912.

M. U. H. Al Rasyid, B. H. Lee, and A. Sudarsono, “Wireless body area network for monitoring body temperature, heart beat and oxygen in blood,” 2015 Int. Semin. Intell. Technol. Its Appl. ISITIA 2015 - Proceeding, pp. 95–98, 2015, doi: 10.1109/ISITIA.2015.7219960.

R. Mohammed, D. Omer, and N. K. Al-salihi, “Monitoring ( SWSHM ),” 2017.

I. Prayogo, R. Alfita, and K. A. Wibisono, “Sistem Monitoring Denyut Jantung Dan Suhu Tubuh Sebagai Indikator Level Kesehatan Pasien Berbasis Iot (Internet Of Thing) Dengan Metode Fuzzy Logic Menggunakan Android,” J. Tek. Elektro dan Komput. TRIAC, vol. 4, no. 2, 2017, doi: 10.21107/triac.v4i2.3257.

B. Rifai, “Algoritma Neural Network Untuk Prediksi,” Techno Nusa Mandiri, vol. IX, no. 1, pp. 1–9, 2013.

I. Santosa, H. Rosiyah, and E. Rahmanita, “Implementasi Algoritma Decision Tree C . 45 Untuk Diagnosa Penyakit Tubercolusis ( Tb ),” J. Ilm. NERO, vol. 3, no. 3, pp. 169–176, 2018.

N. Febriany, “Bab iii metode fuzzy mamdani,” pp. 29–49, 2016.

A. Citra Mutia, A. F. Sundoro, A. Yajiddin, M. Khoirullah, and D. Q. Aini, “Review Penerapan Fuzzy Logic Sugeno Dan Mamdani Pada Sistem Pendukung Keputusan Prakiraan Cuaca Di Indonesia,” Semin. Nas. Sist. Inf. Indones., no. November, 2017, [Online]. Available: http://is.its.ac.id/pubs/oajis/index.php/home/detail/1753/REVIEW-PENERAPAN-FUZZY-LOGIC-SUGENO-DAN-MAMDANI-PADA-SISTEM-PENDUKUNG-KEPUTUSAN-PRAKIRAAN-CUACA-DI-INDONESIA.

B. Setia, “Penerapan Logika Fuzzy pada Sistem Cerdas,” J. Sist. Cerdas, vol. 2, no. 1, pp. 61–66, 2019, doi: 10.37396/jsc.v2i1.18.

N. Febriany, F. Agustina, and R. Marwati, “Aplikasi Metode Fuzzy Mamdani Dalam Penentuan Status Gizi Dan Menggunakan Software Matlab,” J. EurekaMatika, vol. 5, no. 1, pp. 84–96, 2017.

S. Widodo, M. M. Amin, A. Supani, and A. S. Handayani, “Prototype Design of CO2, CH4 and SO2 Toxic Gas Detectors in the Room Using Microcontroller-Based Fuzzy Logic,” J. Phys. Conf. Ser., vol. 1500, no. 1, pp. 0–13, 2020, doi: 10.1088/1742-6596/1500/1/012107.

Nasri, “Kecerdasan buatan ( Artificial Intelligence ),” Artif. Intell., vol. 1, no. 2, pp. 1–10, 2014.

N. Khairina, “Analisis Fungsi Keanggotaan Fuzzy Tsukamoto Dalam Menentukan Status Kesehatan Tubuh Seseorang,” SinkrOn, vol. 1, no. 1, p. 19, 2017, doi: 10.33395/sinkron.v1i1.5.

S. Nurmuslimah, “Aplikasi Fuzzy Logic Mamdani untuk Perkembangan Pertumbuhan Anak Berdasarkan BGM-KMS,” Integer, vol. 1, no. 1, pp. 59–66, 2016.

M. S. Asih, “Sistem Pendukung Keputusan Fuzzy Mamdani pada Alat Penyiraman Tanaman Otomatis,” J. Sist. Inf., vol. 5341, no. April, pp. 41–52, 2018, [Online]. Available: http://jurnal.uinsu.ac.id/index.php/query/article/view/1566/1271.

Hidayah, Nuril, Martinus Mujur Rose, and Nasron Nasron. "Rancang Bangun Alat Pendeteksi Tingkat Stress Pada Manusia Berbasis Arduino Uno." PROtek: Jurnal Ilmiah Teknik Elektro 8.1 (2021): 31-39.




DOI: http://dx.doi.org/10.33387/protk.v8i2.3341

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ade Silvia Handayani, Irawan Hadi, Sanyyah Plowerita

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Editorial Office :
Program Studi Teknik Elektro. Fakultas Teknik. Universitas Khairun | Jl. Jusuf Abdulrahman Kotak Pos 53 Gambesi,  Kota Ternate, Indonesia | Email : protek@unkhair.ac.id, Kontak : 082292852552

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View Stat Protek