A Systematic Review of Ceramic Nozzle Manufacturing: Methods, Strengths, Limitations, and Future Directions

Agung Purnomo, R. Faiz Listyanda, Husnan Rizky Ramadhan, Juero Presinata Putra

Sari


Ceramic nozzles are used in a whole range of industrial applications, thanks to their excellent thermal, wear resistance, and durability in extreme environments. This study provides a Systematic Literature Review (SLR) leveraging PRISMA methodology evaluating methods, strengths, limitations, and future directions. This study groups together ceramic nozzle functions, production processes, strengths, and limitations to help determine the most productive fabrication approach. Findings reveal that conventional ceramic production methods allow for structural integrity, but modern additive manufacturing methods improve precision and scalability. Nevertheless, issues like brittleness and demanding manufacturing processes still pose major challenges. Emerging areas such as nano-ceramic composites, hybrid polymer, AI and machine learning-driven manufacturing, and sustainable sintering techniques can establish a new paradigm for performance and cost-effectiveness in future research. Moreover, pursuing biomedical and energy system applications would be another area of potential for ceramics material versatility and industrial relevance.

Kata Kunci


Ceramic, Nozzle, Manufacturing, Methods, Direction

Teks Lengkap:

PDF

Referensi


S. Mungiguerra et al., “Ultra-high-temperature testing of sintered ZrB2-based ceramic composites in atmospheric re-entry environment,” Int J Heat Mass Transf, vol. 156, p. 119910, 2020, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.119910.

S. Mungiguerra, G. D. Di Martino, R. Savino, L. Zoli, L. Silvestroni, and D. Sciti, “Characterization of novel ceramic composites for rocket nozzles in high-temperature harsh environments,” Int J Heat Mass Transf, vol. 163, p. 120492, 2020, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2020.120492.

D. Sciti et al., “Propulsion tests on ultra-high-temperature ceramic matrix composites for reusable rocket nozzles,” Journal of Advanced Ceramics, vol. 12, no. 7, pp. 1345–1360, 2023, doi: 10.26599/JAC.2023.9220759.

W. Chen, H. Wenhui, ziqiang Zhao, N. He, L. Xiuqing, and H. Li, “Mechanical properties and tribological characteristics of B4C-SiC ceramic composite in artificial seawater,” Journal of Asian Ceramic Societies, vol. 9, no. 4, pp. 1495–1505, Oct. 2021, doi: 10.1080/21870764.2021.1986202.

O. E. Jonathan, “Clay Palm Press: A Technique of Hand Building in Ceramics for Developing Conceptual Forms,” International journal of humanities and social sciences, vol. 12, pp. 822–826, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:54079530

Z. Zhang, J. Xu, Z. Cao, and G. Yao, “Fabrication of high-density NiFe2O4 ceramics by slip casting and pressureless sintering,” Int J Appl Ceram Technol, vol. 17, no. 4, pp. 1811–1821, 2020, doi: https://doi.org/10.1111/ijac.13514.

R. P. Behera, S. B. S. Muhammad, M. H. Jiaxuan, and H. Le Ferrand, “Porous textured ceramics with controlled grain size and orientation,” J Eur Ceram Soc, vol. 41, no. 1, pp. 617–624, 2021, doi: https://doi.org/10.1016/j.jeurceramsoc.2020.08.061.

K. R. Cox, T. D. Marconie, R. A. S. Barger, K. M. Motwani, J. P. Youngblood, and R. W. Trice, “Slurry material extrusion of chopped carbon fiber reinforced silicon carbide ceramic matrix composites (CMCs),” Int J Appl Ceram Technol, vol. 22, no. 1, p. e14915, 2025, doi: https://doi.org/10.1111/ijac.14915.

C. Zou, Y. Ou, W. Zhou, Z. Li, P. Zheng, and X. Guo, “Microstructure and Properties of Hot Pressing Sintered SiC/Y3Al5O12 Composite Ceramics for Dry Gas Seals,” Materials, vol. 17, no. 5, 2024, doi: 10.3390/ma17051182.

R. Donyadari, B. F. Ortiz, and M. A. H. Khondoker, “Optimization of Printing Parameters for Extrusion 3D Printing of Ceramic Clay,” Engineering Proceedings, vol. 76, no. 1, 2024, doi: 10.3390/engproc2024076047.

B. Santosh Kumar, K. Rashmi, D. Arora, Meenakshi, H. Y. Saeed, and G. Nijhawan, “Innovative Ceramic Forming Techniques for High-Strength, Low-Density Components,” in E3S Web of Conferences, EDP Sciences, Oct. 2023. doi: 10.1051/e3sconf/202343001127.

V. P. Meshalkin and A. V Belyakov, “Methods Used for the Compaction and Molding of Ceramic Matrix Composites Reinforced with Carbon Nanotubes,” Processes, vol. 8, no. 8, 2020, doi: 10.3390/pr8081004.

M. B. Islam, H. J. Sumona, M. J. Haque, and A. A. Mahmood, “A progressive overview of the mainstream additive manufacturing of ceramic components for industrial advancement [version 1; peer review: awaiting peer review] ,” Materials Open Research, vol. 3, no. 8, 2024, doi: 10.12688/materialsopenres.17669.1.

P. J. McCauley and A. V Bayles, “Nozzle Innovations That Improve Capacity and Capabilities of Multimaterial Additive Manufacturing,” ACS Engineering Au, vol. 4, no. 4, pp. 368–380, Aug. 2024, doi: 10.1021/acsengineeringau.4c00001.

A. S. Kaygorodov et al., “Nozzles from Alumina Ceramics with Submicron Structure Fabricated by Radial Pulsed Compaction,” in Progress in Powder Metallurgy, in Materials Science Forum, vol. 534. Trans Tech Publications Ltd, Feb. 2007, pp. 1053–1056. doi: 10.4028/www.scientific.net/MSF.534-536.1053.

B. Hu et al., “Comparative investigation of ultrafast thermal shock of Ti3AlC2 ceramic in water and air,” Int J Appl Ceram Technol, vol. 18, no. 5, pp. 1863–1871, 2021, doi: https://doi.org/10.1111/ijac.13811.

E. Schwarzer-Fischer et al., “Study on CerAMfacturing of Novel Alumina Aerospike Nozzles by Lithography-Based Ceramic Vat Photopolymerization (CerAM VPP),” Materials, vol. 15, no. 9, May 2022, doi: 10.3390/ma15093279.

A. J. Allen, I. Levin, and R. A. Maier, “Research, standards, and data needs for industrialization of ceramic direct ink writing,” International Journal of Ceramic Engineering & Science, vol. 4, no. 5, pp. 302–308, 2022, doi: https://doi.org/10.1002/ces2.10158.

J. Deng, D. Yun, H. Zhou, and Y. Tan, “Layered structures in ceramic nozzles for improved erosion wear resistance in industrial coal-water-slurry boilers,” Ceram Int, vol. 36, no. 1, pp. 299–306, Jan. 2010, doi: 10.1016/j.ceramint.2009.09.003.

Y. Feng, J. Liu, J. Deng, G. Zhong, and M. Liu, “Wear behavior of B4C ceramic nozzles,” in Advanced Materials Research, 2011, pp. 601–604. doi: 10.4028/www.scientific.net/AMR.228-229.601.

S. Junlong, L. Changxia, T. Jin, and F. Baofu, “Erosion behavior of B 4C based ceramic nozzles by abrasive air-jet,” Ceram Int, vol. 38, no. 8, pp. 6599–6605, Dec. 2012, doi: 10.1016/j.ceramint.2012.05.045.

D. Jianxin, C. Yangyang, and X. Youqiang, “Erosion wear resistance of CWS laminated ceramic nozzles,” in Advanced Materials Research, 2012, pp. 1915–1919. doi: 10.4028/www.scientific.net/AMR.538-541.1915.

J. Deng, Y. Chen, and Y. Xing, “Fabrication and performance of symmetrical gradient ceramic nozzles,” in Advanced Materials Research, Trans Tech Publications Ltd, 2012, pp. 1063–1068. doi: 10.4028/www.scientific.net/amr.472-475.1063.

X. Tian, B. Zhang, K. Lin, F. Li, and F. Guo, “Study on nozzle burning for engineering ceramics machining with micro-detonation of striking arc,” in Advanced Materials Research, 2012, pp. 97–101. doi: 10.4028/www.scientific.net/AMR.411.97.

S. M. Afazov, R. Ronaldo, D. Londsdale, D. Zdebski, and S. M. Ratchev, “Analysis of micro-drilling of glassy ceramic Macor nozzles for scanning droplet systems,” J Mater Process Technol, vol. 213, no. 2, pp. 221–228, 2013, doi: 10.1016/j.jmatprotec.2012.08.011.

R. Zheng et al., “DEVELOPMENT OF FULL SCALE RAMJET NOZZLE WITH C/SiC CERAMIC MATRIX COMPOSITE,” 2014.

K. R. Beyerlein et al., “Ceramic micro-injection molded nozzles for serial femtosecond crystallography sample delivery,” Review of Scientific Instruments, vol. 86, no. 12, Dec. 2015, doi: 10.1063/1.4936843.

S. Junlong, L. Changxia, L. Hongqi, and L. Bin, “Effect of mechanical properties and impact angles on erosion behavior of B4C/TiB2 matrix ceramic nozzle materials,” Ceram Int, vol. 42, no. 7, pp. 8826–8832, May 2016, doi: 10.1016/j.ceramint.2016.02.127.

B. Sayinci, “The influence of strainer types on the flow and droplet velocity characteristics of ceramic flat-fan nozzles,” Turkish Journal of Agriculture and Forestry, vol. 40, no. 1, pp. 25–37, Jan. 2016, doi: 10.3906/TAR-1411-140.

V. Piotter, A. Klein, K. Plewa, K. R. Beyerlein, H. N. Chapman, and S. Bajt, “Development of a ceramic injection molding process for liquid jet nozzles to be applied for X-ray free-electron lasers,” Microsystem Technologies, vol. 24, no. 2, pp. 1247–1252, Feb. 2018, doi: 10.1007/s00542-017-3493-7.

H. Li, Y. Wang, Z. Wang, and Z. Zhao, “Fabrication of ZrB2-SiC-graphite ceramic micro-nozzle by micro-EDM segmented milling,” Journal of Micromechanics and Microengineering, vol. 28, no. 10, Aug. 2018, doi: 10.1088/1361-6439/aad79b.

R. Thirunavukkarasu, M. Mahendran, R. Tamilselvan, and S. Periyasamy, “Investigation on Single, Four and Five Holes Fuel Injector Nozzle on Performance and Emission Characteristic of Diesel on A VCR Engine by Using Ceramic Coating Material on the Piston Crown,” in Materials Today: Proceedings, Elsevier Ltd, 2018, pp. 7577–7585. doi: 10.1016/j.matpr.2017.11.430.

M. P. Massola, V. Holtz, M. P. de O. Martins, A. da S. Umbelino, and E. F. dos Reis, “Spray volume distribution pattern and droplet size spectrum from ceramic nozzles,” Revista Brasileira de Engenharia Agricola e Ambiental, vol. 22, no. 11, pp. 804–809, Nov. 2018, doi: 10.1590/1807-1929/agriambi.v22n11p804-809.

K. S. Kim, S. H. Lee, V. Q. Nguyen, Y. Yun, and S. Kwon, “Ablation characteristics of rocket nozzle using HfC-SiC refractory ceramic composite,” Acta Astronaut, vol. 173, pp. 31–44, Aug. 2020, doi: 10.1016/j.actaastro.2020.03.050.

Y. Zhu, Q. Zhang, X. Meng, L. Yan, and H. Cui, “Adhesive joint properties of advanced carbon/ceramic composite and tungsten–copper alloy for the hybrid rocket nozzle,” Int J Adhes Adhes, vol. 102, Oct. 2020, doi: 10.1016/j.ijadhadh.2020.102670.

B. S. Karpinos, V. M. Kulish, and T. O. Prikhna, “Thermostressed State of a Nozzle Vane from Max Phase Ceramics,” Strength of Materials, vol. 52, no. 5, pp. 738–745, Sep. 2020, doi: 10.1007/s11223-020-00227-1.

S. Wadekar, A. Yamaguchi, and M. Oevermann, “Large-Eddy Simulation Study of Ultra-High Fuel Injection Pressure on Gasoline Sprays,” Flow Turbul Combust, vol. 107, no. 1, pp. 149–174, 2021, doi: 10.1007/s10494-020-00231-0.




DOI: https://doi.org/10.33387/dinamik.v10i1.9657

Refbacks

  • Saat ini tidak ada refbacks.


Journal PoliciesSubmissionsPeople
Information


Editorial Office :
Program Studi Teknik Mesin Fakultas Teknik. Universitas Khairun | Jl. Jusuf Abdulrahman Kotak Pos 53 Gambesi, ‚ Kota Ternate, Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.