Studi Modifikasi Permukaan Serat Rami untuk Meningkatkan Karakteristik Mekanik Biokomposit PLA Berpenguat Serat Rami

elok hidayah, Ummi L. Jamilah, Aminatur Rosyidah, Riris Idawati

Sari


Studi berbasis review ini bertujuan untuk mengeksplorasi efektivitas modifikasi permukaan serat rami dalam meningkatkan kinerja biokomposit berbasis PLA. Metode penelitian melibatkan analisis komprehensif terhadap artikel-artikel dari jurnal bertaraf internasional, yang dikumpulkan dari tahun 2015 hingga 2024. Studi analisis dilakukan terhadap artikel yang berfokus pada modifikasi permukaan serat rami, dan aplikasi serat rami hasil modifikasi sebagai penguat biokomposit PLA. Hasil studi terhadap beberapa artikel menunjukkan bahwa alkalisasi menggunakan NaOH diidentifikasi sebagai metode yang paling efektif, karena mampu meningkatkan kekasaran permukaan serat, memperkuat interaksi serat-matriks, dan meningkatkan kristalinitas. Perlakuan lain, seperti aplikasi silane, thermal annealing, dan coupling agent, juga memberikan kontribusi pada ikatan yang lebih baik serta peningkatan sifat mekanik. Hasil penelitian menunjukkan bahwa kombinasi berbagai perlakuan permukaan dapat mengoptimalkan sifat biokomposit rami/PLA, menjadikannya pilihan yang cukup baik untuk aplikasi material berkelanjutan.


Teks Lengkap:

PDF

Referensi


C. Wang, Z. Ren, S. Li, and X. Yi, “Effect of ramie fabric chemical treatments on the physical properties of thermoset polylactic acid (PLA) composites,” Aerospace, vol. 5, no. 3, Sep. 2018, doi: 10.3390/aerospace5030093.

X. Chen, J. Ren, N. Zhang, S. Gu, and J. Li, “Effects of heat treatment on the thermal and mechanical properties of ramie fabric-reinforced poly(lactic acid) biocomposites,” Journal of Reinforced Plastics and Composites, vol. 34, no. 1, pp. 28–36, Jan. 2015, doi: 10.1177/0731684414562222.

E. Hidayah, A. Rosyidah, and F. Rizka Tamami, “NAOH EFFECT ON BIOCOMPOSITES: STUDI PENGARUH NAOH TERHADAP KEKUATAN TARIK BIOKOMPOSIT BERPENGUAT SERAT ALAM,” Journal of Educational and Applied Science, vol. 1, no. 2, 2024, [Online]. Available: https://ejournal.iaida.ac.id/index.php/jeas

L. Guili, Y. Qiuran, H. Mingliang, and L. Haimei, “Effect of surface treatment of ramie fiber on crystallization behavior and tensile properties of poly (lactic acid),” China Plastics, vol. 36, no. 11, pp. 51–58, 2022.

A. K. Trivedi, M. K. Gupta, and H. Singh, “PLA based biocomposites for sustainable products: A review,” Oct. 01, 2023, KeAi Communications Co. doi: 10.1016/j.aiepr.2023.02.002.

T. Khan, T. A. Sebaey, C. Muthukumar, H. I. Rao, R. M. Shahroze, and V. Parthasarathy, “Prediction of the tensile properties of biocomposites: a review of micro-mechanical models,” 2024, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s13399-024-06159-z.

V. H. M. Almeida, R. M. Jesus, G. M. Santana, and T. B. Pereira, “Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review,” Feb. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/jcs8020067.

N. Kaouche, M. Mebrek, A. Mokaddem, B. Doumi, M. Belkheir, and A. Boutaous, “Theoretical study of the effect of the plant and synthetic fibers on the fiber-matrix interface damage of biocomposite materials based on PHAs (polyhydroxyalkanoates) biodegradable matrix,” Polymer Bulletin, vol. 79, no. 9, pp. 7281–7301, Sep. 2022, doi: 10.1007/s00289-021-03849-w.

C. H. Lee, A. Khalina, and S. H. Lee, “Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review,” Polymers2021, vol. 13, no. 3.

S. Sharma, A. Majumdar, and B. S. Butola, “Improving the Mechanical Properties of Ramie-Polylactic Acid Green Composites by Surface Modification using Single Bath Alkaline and Silane Treatment,” May 24, 2021. doi: 10.21203/rs.3.rs-508725/v1.

M. Zwawi, “A review on natural fiber bio-composites, surface modifications and applications,” Jan. 02, 2021, MDPI AG. doi: 10.3390/molecules26020404.

Sujito, “Fabricaton and characterization of Short Single Bamboo Fibers Reinforced Poly-lactic Acid ( PLA ) Green Composites ( GC ),” International Journal of Basic & Applied Sciences IJBAS-IJENS, vol. 14, no. 02, pp. 2–5, 2014.

E. Hidayah, L. Musyarofah, D. Puspita, and S. Sujito, “Effect of mercerized surface treated natural fiber to the tensile properties of green composite,” Journal of Physics: Conf. Series, vol. 1217, 2019.

Mariana D. Banea, Jorge S. S. Neto, and Daniel K. K. Cavalcanti, “Recent Trends in Surface Modification of Natural Fibres for Their Use in Green Composites,” Green Composites, pp. 329–350, 2021.

G. L. Devnani, “Recent Trends in the Surface Modification of Natural Fibers for the Preparation of Green Biocomposite,” Green Composites, pp. 273–293, 2021.

L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, “A Review on Natural Fiber Reinforced Polymer Composite and Its Applications,” Int J Polym Sci, vol. 2015, pp. 1–15, 2015, doi: 10.1155/2015/243947.

I. Elfaleh et al., “A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials,” Sep. 01, 2023, Elsevier B.V. doi: 10.1016/j.rineng.2023.101271.

Allan C Manalo, E. Wani, N. A. Zukarnain, W. Karunasena, and K. Lau, “Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites,” Compos B Eng, vol. 80, pp. 73–83, 2015.

J. De and R. N. Baxi, “Experimental Investigation and Analysis of Mercerized and Citric Acid Surface Treated Bamboo Fiber Reinforced Composite,” IOP Conf Ser Mater Sci Eng, vol. 225, no. 1, 2017, doi: 10.1088/1757-899X/225/1/012154.

R. B. Yusoff, H. Takagi, and A. N. Nakagaito, “Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers,” Ind Crops Prod, vol. 94, pp. 562–573, 2016, doi: 10.1016/j.indcrop.2016.09.017.

T. Yu, C. Hu, X. Chen, and Y. Li, “Effect of diisocyanates as compatibilizer on the properties of ramie/poly(lactic acid) (PLA) composites,” Compos Part A Appl Sci Manuf, vol. 76, pp. 20–27, May 2015, doi: 10.1016/j.compositesa.2015.05.010.

J. Yang, L. Zhu, Z. Yang, L. Yao, and Y. Qiu, “Improving mechanical properties of ramie/poly (lactic acid) composites by synergistic effect of fabric cyclic loading and alkali treatment,” Journal of Industrial Textiles, vol. 47, no. 3, pp. 390–407, Sep. 2017, doi: 10.1177/1528083716648763.

U. L. Jamilah, “THE IMPROVEMENT OF RAMIE FIBER PROPERTIES AS COMPOSITE MATERIALS USING ALKALIZATION TREATMENT: NaOH CONCENTRATION,” 2021.

S. Thomas and P. Balakrishnan, “Materials Horizons: From Nature to Nanomaterials.” [Online]. Available: http://www.springer.com/series/16122

B. Teshome Wagaye et al., “Textile & Leather Review A Review of Cellulosic Fibre Surface Modification Techniques-The Case of Ramie A Review of Cellulosic Fibre Surface Modification Techniques-The Case of Ramie,” vol. 7, pp. 1061–1095, 2024, doi: 10.31881/TLR.

Y. Du, N. Yan, and M. T. Kortschot, “The use of ramie fibers as reinforcements in composites,” in Biofiber Reinforcements in Composite Materials, Elsevier Inc., 2015, pp. 104–137. doi: 10.1533/9781782421276.1.104.

M. Liu et al., “Controlled retting of hemp fibres: Effect of hydrothermal pre-treatment and enzymatic retting on the mechanical properties of unidirectional hemp/epoxy composites,” Compos Part A Appl Sci Manuf, vol. 88, pp. 253–262, Sep. 2016, doi: 10.1016/j.compositesa.2016.06.003.

C. H. Lee, A. Khalina, S. H. Lee, and M. Liu, “A Comprehensive Review on Bast Fibre Retting Process for Optimal Performance in Fibre-Reinforced Polymer Composites,” 2020, Hindawi Limited. doi: 10.1155/2020/6074063.

H. Awais, Y. Nawab, A. Amjad, A. Anjang, H. Md Akil, and M. S. Zainol Abidin, “Environmental benign natural fibre reinforced thermoplastic composites: A review,” Mar. 01, 2021, Elsevier B.V. doi: 10.1016/j.jcomc.2020.100082.

S. K. Paramasivam, D. Panneerselvam, D. Sundaram, K. N. Shiva, and U. Subbaraya, “Extraction, Characterization and Enzymatic Degumming of Banana Fiber,” Journal of Natural Fibers, vol. 19, no. 4, pp. 1333–1342, 2022, doi: 10.1080/15440478.2020.1764456.

L. Cheng et al., “Ramie-degumming methodologies: A short review,” 2020, SAGE Publications Ltd. doi: 10.1177/1558925020940105.

“Retraction: PLA based Bio Composite reinforced with natural fibers – Review (IOP Conf. Ser.: Mater. Sci. Eng. 1145 012069),” IOP Conf Ser Mater Sci Eng, vol. 1145, no. 1, p. 012188, Apr. 2021, doi: 10.1088/1757-899x/1145/1/012188.

P. B. Anand, A. Lakshmikanthan, M. P. G. Chandrashekarappa, C. P. Selvan, D. Y. Pimenov, and K. Giasin, “Experimental Investigation of Effect of Fiber Length on Mechanical, Wear, and Morphological Behavior of Silane-Treated Pineapple Leaf Fiber Reinforced Polymer Composites,” Fibers, vol. 10, no. 7, Jul. 2022, doi: 10.3390/fib10070056.

C. Kit Ang, “Mechanical Strength and Water Absorption Analysis of Silane Treated Kenaf Natural Composites With Silicon Nanoparticles,” 2021, doi: 10.21203/rs.3.rs-297917/v1.

D. K. Debeli, M. Tebyetekerwa, J. Hao, F. Jiao, and J. Guo, “Improved thermal and mechanical performance of ramie fibers reinforced poly(lactic acid) biocomposites via fiber surface modifications and composites thermal annealing,” Polym Compos, vol. 39, pp. E1867–E1879, Jun. 2018, doi: 10.1002/pc.24844.

A. K. Mohanty, M. Misra, and L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: An overview,” Compos Interfaces, vol. 8, no. 5, pp. 313–343, 2001, doi: 10.1163/156855401753255422.

L. Musyarofah, S. Sujito, E. Hidayah, and E. Supriyanto, “Effect of Alkalization on Mechanical Properties of Green Composites Reinforced with Cellulose from Coir Fiber.”

E. Hidayah, A. Sjaifullah, L. Rohman, and E. Supriyanto, “Influence of Citric Acid Addition and Fiber Treatment on Tensile Properties of Ramie Fiber Reinforced Poly-lactic Acid (PLA) Green Composite,” Jour of adv research in dynamical & control systems, vol. 12, p. 2, 2020, doi: 10.5373/JARDCS/V12SP2/SP20201136.

D. K. Debeli, Z. Qin, and J. Guo, “Study on the Pre-Treatment, Physical and Chemical Properties of Ramie Fibers Reinforced Poly (Lactic Acid) (PLA) Biocomposite,” Journal of Natural Fibers, vol. 15, no. 4, pp. 596–610, Jul. 2018, doi: 10.1080/15440478.2017.1349711.

J. Zhan et al., “Effect of the compatilizer and chemical treatments on the performance of poly(lactic acid)/ramie fiber composites,” Composites Communications, vol. 27, Oct. 2021, doi: 10.1016/j.coco.2021.100843.

D. K. Debeli, Z. Qin, and J. Guo, “Study on the Pre-Treatment, Physical and Chemical Properties of Ramie Fibers Reinforced Poly (Lactic Acid) (PLA) Biocomposite,” Journal of Natural Fibers, vol. 15, no. 4, pp. 596–610, Jul. 2018, doi: 10.1080/15440478.2017.1349711.

D. K. Debeli, M. Tebyetekerwa, J. Hao, F. Jiao, and J. Guo, “Improved thermal and mechanical performance of ramie fibers reinforced poly(lactic acid) biocomposites via fiber surface modifications and composites thermal annealing,” Polym Compos, vol. 39, pp. E1867–E1879, Jun. 2018, doi: 10.1002/pc.24844.




DOI: https://doi.org/10.33387/saintifik.v9i2.9251

Refbacks

  • Saat ini tidak ada refbacks.


Editorial Office:

Jl. Bandara Sultan Baabullah Kampus 1 Universitas Khairun

Kelurahan Akehuda Kec. Kota Ternate Utara, 97728

INDEXED ON

 Â  Â   

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor