IDENTIFIKASI DAUN KOPASANDA MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN BACKPROPAGATION

Dimas Prasetyo, Muhammad Dzikrullah Suratin, Abdul Haris Muhammad

Sari


Plants are one of the components needed by humans. The science that studies plants has also made rapid progress, as well as plant recognition and identification systems that are useful in providing various information. The recognition process can be applied to various parts of the plant, one of which is the recognition of leaf images. The leaf image recognition process must go through a long learning process, so an image processing technique is used, namely Artificial Neural Networks (ANN). One of the artificial neural network training methods that is often used is Backpropagation. Backpropagation trains the network to obtain a balance between the network's ability to recognize patterns used during training and the network's ability to provide the correct response to input patterns that are similar (but not the same) to the patterns used during training [1]. Identification of leaf types using ANN in this experiment uses 3 types of leaf names such as kopasanda leaves, wild plant leaves sample A, wild plant leaves sample B with 20 leaf image samples with different leaf shapes for each type. Epoch in this Artificial Neural Network reaches a maximum value of 1000 iterations. Before conducting image testing, the image training process is carried out first. After testing on 20 leaf image samples, 19 leaf image samples were found to have correctly detected results and 1 leaf image sample had undetected results. From the results of this study, the success rate was 95% successfully detected and 5% were not successfully detected. The purpose of this study is to create a system that can recognize wild kopasanda plants based on texture and leaf shape features by implementing the Backpropagation Artificial Neural Network method.

Kata Kunci


Image processing, Neural Networks, leaf images

Teks Lengkap:

PDF

Referensi


Siang, J.J, 2009, “Jaringan Syaraf Tiruan dan Pemrogramannya menggunakan Matlab”, Penerbit Andi, Yogyakarta.

Rini, Ekwasita, 2009, “Pasokan dan Permintaan Tanaman Obat Indonesia Serta Arah Penelitian dan Pengembangannya”, Indonesian Medicinal and Aromatic Crops Research Institute, Vol.8, No.1.

Putra, Bambang, dan Gelar, 2011, “Aplikasi Pengenalan Suara Untuk Request Lagu Menggunakan Jaringan Syaraf Tiruan Backpropagation”, Universitas Telkom.

Indrawan, Frandika, 2010, “Aplikasi Pengenalan Pola Daun Menggunakan Jaringan Syaraf Learning Vector Quantification Untuk Penentuan Tanaman Obat”, Seminar Nasional Informatika.

Fanindia, 2013, “Jaringan Saraf Tiruan Propagasi Balik Tiga Faktor Dalam Pengenalan Sidik Jari”, Teknologi Informasi Universitas Sumatera Utara.

Akinmoladun, Afolabi C., Ibukun, E.O., Dan-Ologe, I.A. Phytochemical Constituents andAntioxidant Properties of Extracts from the Leaves Of Chromolaena odorata, scientific Research and Essay Volume 2.2007

Benjamin, VT. Phytochemical and Antibacterial Studies on The Essential Oil of Euphatorium Odoratum. Pharmaceutical Biology. 2011.

Dewa Gede Eka Yudistira, K. L. (2019). EFEK ANTI DIABETES EKSTRAK ETANOL DAUN SEMAK MERDEKA (Chromolaena odorata) TERHADAP PENURUNAN KADAR GLUKOSA DARAH TIKUS PUTIH (Rattus novergicus) GALUR SPARGUE DAWLEY. Cendana Medical Journal, Vol 6(No 3), 490-498, 6, 490-498.

Fitrah, M. (2016). Identifikasi Ekstrak Daun Kopasanda (Chromolaena odorada Linn) terhadap Sel Antiproliferasi Tikus Leukemia L1210. Jf Fik Uinam, 4(3), 99–105.

Hermawan, A. 2006. Jaringan Syaraf Tiruan, Teori, dan Aplikasi. Yogyakarta: ANDI.

Kadir , Susanto, 2013, “Pengolahan Citra Teori dan Aplikasi”, Penerbit Andi, Yogyakarta.

Kusumadewi, S. 2003, “Artificial Intelligence (Teknik & Aplikasinya)”, Penerbit Andi, Jogjakarta.

Lent, Craig S., 2013. Learning to Program With MATLAB : Building GUI Tools/ / Craig S. Lent, Wiley.

Ngozi, Igboh M., Jude, Ikewuchi C. and Catherine, Ikewuchi C. Chemical Profile of Chromolaena odorata L. (King and Robinson) Leaves.Pakistan Journal of Nutrition 8, 2009.

Nurhajanah, M., Agussalim, L., Iman, S. Z., & Hajiriah, T. L. (2020). Analisis Kandungan Antiseptik Daun Kopasanda (Choromolaena odorata) sebagai Dasar Pembuatan Gel pada Luka. Bioscientist : Jurnal Ilmiah Biologi, 8(2), 284. https://doi.org/10.33394/bjib.v8i2.2886.

Prawiradiputra, Bambang R. 2007. Ki Rinyuh (Chromolaena odorata (L.) R. M. King & H. Robinson): Gulma Padang Rumput Yang Merugikan. Bogor: Balai Penelitian Ternak.

Rini Nuraini2, Nanang Sadikin3, Yuri Rahmanto4 Rhaishudin Jafar Rumandan1, "Klasifikasi Citra Jenis Daun Berkhasiat Obat Menggunakan Algoritma Jaringan Syaraf Tiruan Extreme Learning Machine," Journal Of Computer System And Informatics (Josyc), Vol. 4, No. 1, P. 145−154, November 2022.

Rohmat Indra Borman2, Desi Nurnaningsih1, Alfry Aristo J Sinlae3, Rosyid Ridlo Al Hakim4 Arief Herdiansah1*, "Klasifikasi Citra Daun Herbal Dengan Menggunakan Backpropagation Neural Networks Berdasarkan Ekstraksi Ciri Bentuk," JURIKOM (Jurnal Riset Komputer), Vol. 9, No. 2, April 2022.




DOI: https://doi.org/10.33387/saintifik.v10i1.9774

Refbacks



Editorial Office:
Sultan Baabullah Airport Street, Campus-1 Universitas Khairun
Akehuda sub-district, North Ternate district, Ternate City 97728

Contact:
 saintifika@unkhair.ac.id
 +62 857 3577 5015 (Aji Saputra, M.Pd)
 +62 823 6233 7804 (Hutri Handayani Isra, M.Pd)