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The integration of energy distribution systems and telecommunication networks is crucial for improving the 

reliability, efficiency, and scalability of smart grids. However, challenges such as electromagnetic interference 

(EMI), latency, and fault tolerance complicate seamless operation. This study proposes a hybrid framework using 

MATLAB/Simulink to model and simulate energy distribution, real-time monitoring, and fault detection in high-

voltage environments. The simulation framework consists of a high-voltage energy distribution network modeled 

with multiple buses, transformers, and distributed renewable energy sources. IoT-based sensors are strategically 

placed at critical nodes to collect real-time voltage and current data, which are transmitted via 5G communication 

protocols using the MQTT messaging standard. Fault detection is performed using an AI-driven Support Vector 

Machine (SVM) algorithm, trained with historical fault data to detect anomalies and classify fault types with high 

accuracy. The simulation environment integrates power flow analysis, real-time fault detection mechanisms, and 

communication latency assessment to evaluate system performance. Key findings demonstrate up to 92.8% energy 

efficiency with 60% renewable energy penetration, fault recovery times reduced to 35 ms through AI-based 

detection, and communication latency maintained below 15 ms for IoT-based monitoring. These results validate the 

proposed framework’s ability to address critical challenges in smart grids, including EMI mitigation, fault tolerance, 

and system scalability. This research bridges the gap between energy distribution and telecommunication systems, 

offering a scalable and sustainable solution for smart grid optimization. 
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1. INTRODUCTION 

The rapid advancement of energy systems and telecommunication technologies has driven the evolution 

of traditional power grids into smart grids, which integrate energy distribution with robust communication 

networks. Unlike conventional grids, which are limited in scalability and efficiency, smart grids enable real-time 

monitoring, fault detection, and seamless integration of renewable energy sources. These capabilities are crucial 

in addressing the increasing global demand for reliable and sustainable energy systems [1]. However, the 

implementation of smart grids presents significant challenges, particularly in achieving the interoperability of 

energy and telecommunication systems, mitigating electromagnetic interference (EMI), and ensuring system 

scalability under high-voltage environments [2]. These challenges highlight the need for a hybrid system that 

balances energy distribution efficiency with telecommunication reliability. 

Hybrid systems in smart grids leverage the convergence of IoT-based monitoring, 5G communication 

protocols, and AI-driven analytics to optimize performance. IoT sensors enable real-time data collection and fault 

detection, improving energy distribution efficiency and reducing downtime [3]. The proposed hybrid framework 

integrates IoT-based monitoring, 5G communication protocols, and AI-driven fault detection, as illustrated in 

Figure 1. This framework bridges the gap between energy distribution and telecommunication reliability. The 

adoption of 5G protocols further enhances communication reliability by reducing latency and increasing data 

throughput, even in dynamic grid environments [4]. Additionally, AI-driven predictive maintenance systems 

facilitate early fault detection and operational optimization, minimizing the risk of system failures [5]. Despite 

these advancements, most existing studies have addressed energy and telecommunication systems as separate 

domains, leaving a critical gap in their combined optimization for smart grid applications [6]. 
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Figure 1. Conceptual Diagram of the Proposed Smart Grid Hybrid Framework 

 

Electromagnetic interference (EMI) remains a persistent challenge in high-voltage environments, where 

it disrupts communication signals and compromises system reliability. Liu et al. [7] emphasize that EMI is 

particularly problematic in substations, where data loss can lead to significant operational inefficiencies. While 

solutions such as shielded cables and EMI-resistant communication protocols have been proposed, they are often 

costly and difficult to scale [8]. Furthermore, latency in communication networks continues to hinder real-time 

fault detection and energy flow optimization, as highlighted by recent studies on 5G-enabled smart grids [9]. The 

integration of renewable energy sources, while essential for sustainability, introduces additional system instability 

due to their intermittent nature, necessitating advanced regulation mechanisms to maintain grid stability [10]. 

To address these challenges, hybrid systems in smart grids have emerged as a promising solution, 

leveraging the convergence of IoT-based monitoring, 5G communication protocols, and AI-driven analytics to 

optimize performance. IoT sensors enable real-time data collection and fault detection, improving energy 

distribution efficiency and reducing downtime [11]. The adoption of 5G protocols further enhances 

communication reliability by reducing latency and increasing data throughput, even in dynamic grid environments 

[12]. AI-driven predictive maintenance systems facilitate early fault detection and operational optimization, 

minimizing the risk of system failures [13]. However, the lack of an integrated framework that simultaneously 

addresses energy distribution efficiency, telecommunication reliability, and system scalability remains a critical 

research gap [14]. 

While previous studies have explored individual components of smart grid technology, there remains a 

critical gap in developing an integrated framework that addresses energy distribution efficiency, 

telecommunication reliability, and system scalability. Existing solutions often treat these challenges in isolation, 

resulting in suboptimal performance when applied to real-world scenarios. Moreover, current approaches lack 

comprehensive strategies for mitigating EMI in high-voltage environments, particularly when integrating 

renewable energy sources at scale. 

This study aims to answer the following research question: How can a hybrid framework integrating 

energy distribution and telecommunication systems improve reliability, efficiency, and scalability while 

addressing challenges such as EMI, latency, and fault tolerance in smart grids? 

This study hypothesizes that a hybrid system leveraging IoT-based monitoring, 5G communication protocols, and 

AI-driven fault detection can enhance energy efficiency, reduce fault recovery time, and maintain low-latency 

communication, thereby addressing the critical challenges of EMI, scalability, and system reliability. 

The state of the art in smart grid technology focuses on the integration of advanced communication and energy 

management systems. Recent studies have demonstrated the effectiveness of IoT-based monitoring for real-time 

fault detection and energy flow optimization [15]. The implementation of 5G protocols has shown significant 

potential in reducing latency and ensuring reliable data exchange in dynamic grid environments [16]. Additionally, 

AI-driven fault detection and predictive maintenance systems have emerged as critical components for enhancing 

grid reliability and minimizing downtime [17]. Despite these advancements, the integration of these technologies 

into a cohesive framework remains underexplored, necessitating further research to bridge this gap. 

By clearly defining the research problem, question, and hypothesis, this study establishes a focused approach to 

bridging the gap between energy distribution and telecommunication systems. The proposed framework is 

validated through MATLAB/Simulink simulations, enabling a comprehensive analysis of its performance under 

various operational conditions. 

 

2. METHOD  

 The proposed fault detection framework leverages an AI-based predictive maintenance algorithm designed 

to identify and classify faults in a smart grid environment. The methodology is divided into several key stages: 

data collection, data preprocessing, feature selection, model training, and hyperparameter optimization. Each stage 
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is described in detail below to address the concerns regarding dataset diversity, preprocessing techniques, and 

model tuning. 

2.1. System Modeling 

 The energy distribution system is modeled in MATLAB/Simulink to represent the dynamic behavior of 

smart grids under various operational conditions. Key components of the model include: 

 Power Flow Analysis: The simulation incorporates load flow equations based on Kirchhoff's laws to 

calculate voltage, current, and power across different nodes of the grid. The mathematical foundation includes:  

 

𝑃𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 cos 𝜃𝑖𝑗 + 𝐵𝑖𝑗 sin 𝜃_𝑖𝑗)𝑛
𝑗=1                          (1) 

 

𝑄𝑖 = 𝑉𝑖 ∑ 𝑉𝑗(𝐺𝑖𝑗 sin 𝜃𝑖𝑗 − 𝐵𝑖𝑗 cos 𝜃_𝑖𝑗)𝑛
𝑗=1                         (2) 

𝑤ℎ𝑒𝑟𝑒  
𝑃𝑖 𝑎𝑛𝑑 𝑄𝑖 : Active and reactive power at node 𝑖 
𝑉𝑖  𝑎𝑛𝑑  𝑉𝑗  : Voltages at nodes 𝑖 𝑎𝑛𝑑 𝑗 

𝐺𝑖𝑗  𝑎𝑛𝑑  𝐵𝑖𝑗: : Conductance and susceptance of the line between nodes 𝑖 𝑎𝑛𝑑 𝑗 

𝜃𝑖𝑗: Phase angle difference between nodes 𝑖 𝑎𝑛𝑑 𝑗 

 

 Fault detection is implemented using an AI-based supervised learning algorithm, specifically a Support 

Vector Machine (SVM). The algorithm is trained on a dataset consisting of historical fault data collected from 

publicly available power system fault databases and real-time monitoring logs from simulated grid environments. 

The dataset includes 10,000 instances of fault and normal operation data, covering diverse fault scenarios such as 

short circuits, line-to-ground faults, and load imbalances. The data was sourced from IEEE power system datasets 

and supplemented with synthetic data generated using MATLAB/Simulink to ensure a comprehensive 

representation of real-world conditions. 

 To enhance model generalization, data augmentation techniques were applied to balance the dataset, 

ensuring that minority fault classes were sufficiently represented. Noise reduction was performed using a 

Butterworth low-pass filter to remove high-frequency disturbances that could interfere with feature extraction 

 

2.2. Simulation Setup 

 The simulation is implemented in MATLAB/Simulink with several configurations to replicate real-world 

conditions in a high-voltage distribution network. The modeled grid includes multiple buses, transformers, and 

transmission lines, along with renewable energy sources connected at distributed nodes to represent modern 

energy systems. IoT sensors are strategically placed at critical nodes to collect real-time data on voltage, current, 

and power flow. These data are transmitted using advanced communication protocols, such as MQTT, to ensure 

low-latency communication suitable for dynamic environments. 

To evaluate the system’s adaptability, dynamic load variations are introduced based on real-world utility 

data, simulating time-varying demands. Additionally, the simulation incorporates three fault scenarios to assess 

fault detection and recovery mechanisms. These include short circuits characterized by sudden drops in 

impedance, line-to-ground faults representing connections between a phase and the ground, and load imbalances 

resulting from unequal distribution of load across phases. This comprehensive setup enables a robust analysis of 

system performance under diverse operational conditions. 

Figure 2 provides an overview of the simulation setup in MATLAB/Simulink, including grid parameters, 

IoT-based monitoring, and fault scenarios. 
 

 

Figure 2. Simulation Setup for the Proposed Hybrid System in MATLAB/Simulink. 
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2.3. Performance Evaluation 

 The performance of the system is evaluated based on the following key performance indicators (KPIs): 

Energy Efficiency:  

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
𝑈𝑠𝑒𝑓𝑢𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑝𝑢𝑡
× 100                           (3) 

 The performance of the system is evaluated through various key parameters to ensure its robustness and 

reliability under diverse operating conditions. Fault recovery time, which refers to the time required to detect, 

isolate, and recover from faults, is measured and optimized using an AI-based fault detection system to achieve 

minimal recovery durations. Communication latency is another critical metric, assessed as the time delay between 

data collection by IoT sensors and its transmission to the control center, ensuring suitability for real-time 

applications. Electromagnetic interference (EMI) effects are simulated using MATLAB’s Simscape toolbox to 

determine their impact on communication reliability. Various mitigation techniques, including shielding and 

signal filtering, are tested to enhance system performance. 

System stability is also analyzed by monitoring voltage and frequency deviations, particularly under scenarios of 

high renewable energy penetration, which are prone to instability. The simulation results are visualized using 

MATLAB’s plotting tools, offering clear insights through graphs depicting voltage profiles, fault recovery times, 

and energy efficiency across different scenarios. These visualizations support a comprehensive understanding of 

the system's operational characteristics. 

 Before training the model, the dataset underwent several preprocessing steps, including data normalization, 

outlier removal, and missing value imputation. Voltage, current, and power waveforms were normalized using 

Min-Max Scaling to ensure uniform feature distribution, facilitating efficient learning. To improve classification 

accuracy, principal component analysis (PCA) was used to reduce dimensionality while preserving the most 

informative features. 

 The fault detection model was developed using a Support Vector Machine (SVM) with a Radial Basis 

Function (RBF) kernel, which was chosen due to its ability to handle non-linear relationships in fault 

classification. The model was trained using an 80-20 train-test split, ensuring a balanced evaluation of model 

performance. 

 To optimize hyperparameters, a grid search technique was employed, tuning key parameters such as: 

Regularization parameter (C): Tested over a range of 0.1 to 100 to control the trade-off between margin 

maximization and misclassification. 

Kernel coefficient (γ): Evaluated within 0.001 to 1 to optimize decision boundaries for non-linear faults. 

 The final model achieved an accuracy of 98.3% on the test set, with precision and recall values exceeding 

95% across all fault types. Performance metrics, including confusion matrix analysis and F1-score evaluation, 

confirmed the robustness of the proposed AI-driven fault detection system. 

2.4. Validation 

 To ensure the validity and reliability of the simulation results, several validation steps are performed. Firstly, 

the simulation outcomes are compared with real-world data obtained from published studies and utility reports. 

This comparison includes validating load profiles and fault recovery times against established industry 

benchmarks to confirm their accuracy. Additionally, a sensitivity analysis is conducted to evaluate the impact of 

key parameters, such as load variations and renewable energy penetration, on the overall system performance. 

 The fault detection algorithm is further validated using a separate test dataset. Metrics such as accuracy, 

precision, recall, and F1-score are employed to rigorously assess its classification performance, ensuring the 

robustness and practical applicability of the AI-based fault detection system in real-world scenarios. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
        (4) 

 

3. RESULTS AND DISCUSSION 

The results of the proposed hybrid smart grid framework are presented in terms of energy efficiency, 

fault recovery time, system stability, and IoT communication latency. To ensure the reliability of the findings, 

multiple simulation runs were conducted under varying conditions, including renewable energy fluctuations and 

IoT node variations. Statistical analyses, including error margins and standard deviations, have been incorporated 

to assess the robustness of the results. 

3.1  Energy Efficiency 

Energy efficiency was calculated as the ratio of energy successfully delivered to the load to the total 

input energy. Simulations were conducted under different levels of renewable energy penetration, and statistical 

analysis was performed to assess result variability. This metric was calculated as the ratio of delivered energy to 

total generated energy, accounting for losses due to transmission inefficiencies and faults. The variability in energy 
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efficiency was analyzed by introducing fluctuations in renewable energy sources. The results are summarized in 

Table 1. 

Table 1. Statistical summary of energy efficiency under fluctuating renewable energy conditions 

Renewable Energy Penetration (%) Mean Energy Efficiency (%) Standard Deviation (±σ) 

20% 88.5 ±1.2 

40% 91.2 ±1.4 

60% 92.8 ±1.6 

80% 89.7 ±2.1 

 

The results indicate that energy efficiency increases with higher renewable energy penetration, reaching 

a peak at 60% penetration (92.8% ± 1.6%). However, at 80% penetration, efficiency drops to 89.7% ± 2.1%, 

reflecting the impact of power fluctuations due to intermittent renewable sources. The increasing standard 

deviation at higher penetration levels suggests greater variability in system stability, which requires improved 

power regulation mechanisms. 

3.2  Fault Recovery Time 

Fault recovery time was measured for different types of faults, with multiple simulation runs conducted 

to obtain mean recovery times and their standard deviations.  The simulations considered various fault scenarios, 

including single-line-to-ground faults, line-to-line faults, and three-phase faults. The variability in recovery time 

was influenced by the location of the fault and the complexity of the fault type. Table 2 provides a statistical 

summary. 

Table 2. Fault recovery time statistics for different fault types. 

Fault Type Mean Detection Time (ms) Mean Recovery Time (ms) Standard Deviation (±σ) 

Short Circuit 8 35 ±1.5 

Line-to-Ground Fault 10 40 ±2.0 

Load Imbalance 12 45 ±2.4 

 

The fast detection and recovery times demonstrate the effectiveness of the SVM algorithm in real-time 

fault detection. This is crucial for maintaining system reliability, especially in high-voltage environments. The 

variation in recovery times across fault types reflects the complexity of each fault. 

3.3 System Stability 

System stability was evaluated by analyzing voltage and frequency deviations under varying load and 

renewable energy conditions. The proposed framework maintained a voltage deviation of less than ±5% and a 

frequency deviation of less than ±0.1 Hz in 95% of the simulation runs. These results are summarized in Table 3. 

 

Table 3. System stability metrics under varying load and renewable energy conditions. 

Stability Metric Mean Deviation Standard Deviation Confidence Interval (95%) 

Voltage Deviation (%) ±4.2 0.8 [±3.4, ±5.0] 

Frequency Deviation (Hz) ±0.08 0.02 [±0.06, ±0.10] 

 

The results indicate that the framework can effectively stabilize the grid even under challenging 

conditions, such as sudden drops in renewable energy output or unexpected load surges. 

3.4 IoT-Based Communication Latency 

IoT communication latency, defined as the time taken for data to travel from IoT sensors to the control 

center, was evaluated under varying network conditions. The average latency was recorded as 45 ms, with a 

standard deviation of 5 ms. Table 4 provides a detailed breakdown of the results. 

 

Tabel 4. IoT communication latency under different network conditions 

Network Condition Mean Latency (ms) Standard Deviation (ms) Confidence Interval (95%) 

Normal 42 3 [39, 45] 

High Traffic 50 6 [44, 56] 

EMI-Interference Present 48 5 [43, 53] 
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The variability in latency under different conditions is relatively low, demonstrating the reliability of the 

communication network even in the presence of electromagnetic interference (EMI) or high traffic loads. 

Latency increased with the number of IoT nodes but remained below the 15 ms threshold required for real-time 

applications. This indicates that the IoT-based communication system implemented is sufficiently reliable to 

support smart grid operations. 

Figure 3 shows that energy efficiency increases up to 60% renewable energy penetration, reaching a maximum of 

92.8%, but decreases at 80% penetration due to unstable power fluctuations. 

 

Figure 3. Energy Efficiency Graph 

 

 

Figure 4. Fault Recovery Time Graph 

 

This figure compares recovery times for three main fault types. The AI-based fault detection system 

recovers faults within 35-45 ms, depending on the fault type. 
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Figure 5. Voltage and frequency deviations under different operating conditions 

 

This figure visualizes voltage and frequency deviations during normal operation and at 80% renewable 

energy penetration. Deviations increase significantly at higher penetration levels, emphasizing the need for 

advanced power regulation mechanisms. 

The inclusion of statistical analyses, such as standard deviations and confidence intervals, provides a more 

comprehensive assessment of the framework's performance. The results indicate that the proposed system is robust 

and reliable across diverse scenarios: 

Energy Efficiency: The framework consistently maintains high efficiency, even under renewable energy 

fluctuations. 

Fault Recovery Time: The system demonstrates rapid fault recovery, with minimal variability across fault types. 

System Stability: Voltage and frequency deviations remain within acceptable ranges, ensuring stable grid 

operation. 

IoT Communication Latency: The communication network performs reliably, with low latency even under 

challenging conditions. 

These findings highlight the robustness of the proposed framework and its ability to generalize across different 

operational scenarios. Future work will focus on further validating the results using real-world field data and 

extending the analysis to include additional fault scenarios and grid configurations. 

 

4. CONCLUSION 

This study proposed a hybrid smart grid framework that integrates IoT-based monitoring, 5G 

communication protocols, and AI-driven fault detection to improve energy efficiency, fault recovery time, system 

stability, and communication latency. The results demonstrated the framework's robustness and reliability across 

various scenarios, with high energy efficiency (92.8%), rapid fault recovery (1.85 seconds on average), minimal 

voltage and frequency deviations, and low IoT communication latency (45 ms on average). Statistical analyses, 

including standard deviations and confidence intervals, were incorporated to validate the reliability of the findings, 

providing a more comprehensive assessment of the system's performance. 

However, despite these promising outcomes, there are limitations that highlight areas for future improvement. 

The study primarily relied on simulated and publicly available datasets, which may not fully capture the 

complexities of real-world smart grid environments. Additionally, while statistical analyses were performed to 

assess result variability, further exploration is needed to improve the generalizability of the model across larger-

scale networks and diverse fault scenarios. To address these gaps, future research should focus on testing the 

proposed framework with larger-scale networks and incorporating real-world datasets from diverse geographic 

regions and grid configurations. This would ensure that the model can generalize effectively to different 

operational conditions and account for variations in energy demand, renewable energy penetration, and fault 

characteristics. Furthermore, integrating cross-validation techniques with different simulation models could 

provide additional insights into the framework's reliability and scalability, offering a more rigorous evaluation of 

its performance. By addressing these areas, future studies can build upon the foundation established in this 

research, further enhancing the reliability and applicability of smart grid systems in real-world settings. This 

approach will not only improve the robustness of the methodology but also contribute to the development of more 

resilient and efficient energy systems 
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