Prediction of the Number of Motorized Vehicles in Ternate City Using the Average Based Fuzzy Time Series Model Method
Abstract
Prediction or forecasting is one of the most important elements in decision-making. The impact caused is the number of motorized vehicles, residents, roads, and area area. By predicting the number of motor vehicles, the prediction data can be used from a program to reduce the impact of a high number of motor vehicles. This study aims to determine the Prediction of the Number of Motorized Vehicles in Ternate City using the Average Based Fuzzy Time Series Model Method in Ternate City from 2019 to 2024. Settlement using Average Based Method data and fuzzy time series interval numbers have been determined at the beginning of the calculation process, this process is very influential in the formation of fuzzyrelationship on each number to compare each other which will certainly have an impact on the difference in the results of the reduction calculation. The test results are known that the Fuzzy time series is one of the methods for prediction. One type of method is the average-based fuzzy time series with the average total value calculated using the Mean Absolute Percentage Error (MAPE) method obtained from the number of each indicator of 2.98% which shows that this study is included in the category of good used in the prediction of motor vehicles in Ternate City because it has an accuracy value of less than 20%. From the predictions carried out, the MAPE value of the test was 1.01%, the MSE value of forecasting was 1400.5, and the MAD value of forecasting was 27.93.
Keywords
Full Text:
PDFReferences
Arianto, S. B. (2017). Tengah, Analisis Karakteristik Diklat Teknis SDM Penyelenggara Unit Penimbangan Kendaraan Bermotor di Provinsi Jawa Analysis. Jurnal penelitian transportasi darat volume 19, Nomor 1, Maret 2017: 71-82, 19, 71–82.
Berutu, S. S. (2013). Peramalan Penjualan Dengan Metode Fuzzy Time Series. HimsyaTech.
Business Forecasting - John E. Hanke, Dean W. Wichern - Google Buku. (n.d.). Retrieved 25 July 2023, from
Halim, A. S., Kusrini, K., & Prasetyo, A. B. (2021). Prediksi Jumlah Kendaraan Di Kota Tangerang Selatan Dengan Metode Algoritma Genetika. Bit (Fakultas Teknologi Informasi Universitas Budi Luhur), 18(1), 35–40.
Hansun, S. (2013). Peramalan Data IHSG Menggunakan Fuzzy Time Series. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 7(1).
Kaushik et al., 2009. (2009). UNDANG-UNDANG REPUBLIK INDONESIA NOMOR 22 TAHUN 2009 TENTANG LALU LINTAS DAN ANGKUTAN JALAN.
Kincowati, T., Furqon, M. T., & Rahayudi, B. (2019). Prediksi Jumlah Kunjungan Wisatawan Mancanegara Ke Indonesia Menggunakan Metode Average-Based Fuzzy Time Series Models. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(6), 5250–5256.
Makridakis, S. (1999). Metode Dan Aplikasi Peramalan (Jilid 1). Erlangga.
Marzuqi, M., Tafrikan, M., & Maslihah, S. (2022). Prediksi Jumlah Pengunjung Semarang Zoo dengan Metode Fuzzy Time Series. Zeta - Math Journal, 7(1), 19–
Mulyana, D. (2004). Menimbang Iklan Politik di Media Massa Menjelang Pemilihan Presiden 2004. Mediator: Jurnal Komunikasi, 5(1), 75–81.
Mustika, D., & Setiawan. (2014). Peramalan Penjualan Sepeda Motor di Jawa Timur dengan Menggunakan Model Dinamis. Jurnal Sains Dan Seni ITS, 3(2), D224–D229.
Pangestu, W., Widodo, A., & Rahayudi, B. (2018). PREDIKSI JUMLAH KENDARAAN BERMOTOR DI INDONESIA MENGGUNAKAN METODE AVERAGE-BASED FUZZY TIME SERIES MODELS memperoleh gelar Sarjana Komputer Disusun oleh : Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(9), 964.
Tri Sugiarto, A., Ohshima, T., & Sato, M. (2002). Advanced oxidation processes using pulsed streamer corona discharge in water. Thin Solid Films, 407(1–2), 174–178.
Virgianti, V., & Martha, S. (2021). Penerapan Fuzzy Time Series Chen Average Based Pada Peramalan Curah Hujan. Buletin Ilmiah Math. Stat. Dan Terapannya
Wuryanto Endro Puspita Nella Valen, Ika, D. (2021). Model Average-based Fuzzy time series untuk prediksi perkembangan kasus terkonfirmasi positif COVID-19. Jurnal Informatika Upgris, 7(2), 28–32.
Xi, X., Keogh, E., Shelton, C., Wei, L., & Ratanaraahatana, C. A. (2006). Fast time series classification using numerosity reduction. ICML 2006 - Proceedings of the 23rd International Conference on Machine Learning, 2006, 1033–1040.
DOI: https://doi.org/10.33387/ijeeic.v1i2.9110
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Journal Policies | Submissions | People | Information |
Departement of Electrical Engineering, Faculty of Engineering, Universitas Khairun,
Address: Yusuf Abdulrahman No. 53 (Gambesi) Ternate City - Indonesia
Email: ijeeic.unkhair@gmail.com
International Journal of Electrical Engineering and Intelligent Computing (IJEEIC), Universitas Khairun This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.