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Abstract 

 

Heart disease in all its forms remains a significant health threat. Arrhythmia is a type of heart disease whose 

diagnosis and treatment still primarily rely on conventional electrocardiogram-based diagnosis. However, this 

approach is limited, as it is reactive and captures cardiac conditions only at the time of electrocardiogram 

measurement, making it unable to continuously and individually monitor arrhythmia progression for each patient. 

This study explores digital twin technology and develops human digital twin models for the treatment of 

arrhythmia patients. The modeling framework integrates three core components: geometrical modeling, physical 

modeling, and data-driven modeling to represent the human heart and cardiovascular system in a digital 

environment. The output of this integrative process has been implemented in the initial prototype of the Human 

Digital Twin Cockpit, which is designed to treat arrhythmia. This prototype enhances the existing diagnosis and 

treatment, and also incorporates a proactive simulation system. Evaluation and system testing have successfully 

demonstrated their ability to integrate geometric data from medical imaging and physical data from 

electrophysiological sensors to predict arrhythmia in various scenarios.  
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1 INTRODUCTION 

Coronary artery disease remains the leading cause 

of death worldwide, including in Indonesia, with a 

steadily increasing annual prevalence [1,2]. This high 

mortality rate underscores the urgent need for more 

effective methods for early detection and prevention 

[3]. Although the electrocardiogram (ECG) has long 

been the gold standard for diagnosing cardiac rhythm 

disorders (arrhythmias), its utility is often limited to 

that of a reactive diagnostic tool, as it can only record 

cardiac activity at the time of measurement [4]. This 

presents a significant challenge because many 

arrhythmic events are sporadic and may be missed 

during brief recording sessions [5]. 

To address these limitations, the concept of a 

Digital Twin (DT) offers a transformative approach. 

Initially, DT was defined by three key dimensions: the 

physical entity, representing real-world objects; the 

virtual entity, which serves as their digital 

representation; and the connections that link these two 

dimensions together [6,7,8]. However, this model has 

evolved into a more comprehensive five-dimensional 

(5D) framework, incorporating two crucial additional 

components: digital twin data and services. Data can 

be aggregated and integrated from multiple sources, 

encompassing both historical and real-time 

information. Services comprise various intelligent 

functions—including simulations, predictions, and 

optimizations—executable on the virtual model [7] 

(see Figure 1). 

The Human Digital Twin (HDT) is a virtual 

replica of a patient’s heart that integrates medical 

imaging, physiological data, and real-time biosignals 

to model its structure and function. By enabling 

continuous monitoring, simulation, and risk 

prediction, HDT overcomes the limitations of 

conventional arrhythmia diagnosis and treatment, 

shifting healthcare from a reactive intervention model 

to a paradigm of personalized prevention. Through the 

creation of a continuously updated virtual heart replica 

that incorporates an individual's physiological data, we 

can not only monitor current conditions but also 

simulate specific scenarios to predict future 

arrhythmia risks and even virtually test the 

effectiveness of medical interventions prior to their 

https://creativecommons.org/licenses/by/4.0/
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clinical application [9,10]. This capability represents a 

concrete manifestation of the services dimension 

within the DT framework. 

 

 
Figure 1. Digital Twin Evolution 

 

The successful development of an accurate and 

functional Digital Twin critically depends on the 

ability to comprehensively model the physical object's 

various characteristics through multiple approaches. 

This process must incorporate diverse perspectives to 

adequately capture the complexity of biological 

systems like the human heart. A robust framework 

requires the integration of, at a minimum, three 

fundamental modeling types [11]. First, geometric 

modeling encompasses the spatial data needed to 

reconstruct an individual's unique cardiac anatomy, 

typically derived from medical imaging modalities 

like MRI or CT scans. Second, physical modeling 

involves directly measurable physiological parameters 

obtained through clinical instruments or wearable 

sensors. Finally, data-driven modeling incorporates 

computationally derived parameters that cannot be 

directly measured but are inferred through biophysical 

simulations and model calibration against empirical 

data. 

To ensure that each modeling domain captures the 

necessary level of detail, the study commenced with an 

extensive literature review to identify the critical data 

and parameters required for accurate arrhythmia 

modeling. This systematic examination aimed to 

compile the essential electrophysiological information 

needed to replicate both normal and arrhythmic 

cardiac conditions within the Human Digital Twin 

(HDT) framework [12,13]. Through this 

comprehensive review, three primary categories of 

essential data were identified: (1) detailed anatomical 

data encompassing the dimensions and morphology of 

all four cardiac chambers, along with the precise 

locations of key conduction system components, 

including the sinoatrial node and atrioventricular node; 

(2) measurable physiological data, particularly multi-

lead ECG signals that capture the heart's electrical 

activity from body surface recordings; and (3) derived 

biophysical parameters that cannot be directly 

measured, including intrinsic tissue properties such as 

electrical conductivity, refractory periods (cellular 

recovery time), and ion channel characteristics that 

govern cellular action potentials [14]. 

2 RESEARCH METHOD 

This section details the methodological approach 

for designing a Human Digital Twin (HDT) for 

arrhythmia analysis. The process focuses on modeling 

the various characteristics of the physical entity—the 

patient's heart—to develop an HDT service capable of 

performing simulations and analytical functions. Our 

modeling strategy decomposes the heart's complex 

characteristics into three distinct domains: (1) 

geometric, (2) physical, and (3) data-

driven/computational, which are subsequently 

integrated into a unified system. 

 

2. 1 Geometrical Data Modeling 

Following the identification of data requirements, 

the subsequent phase involves modeling the spatial 

characteristics of the physical entity—the patient’s 

heart. The objective of this stage is to construct an 

accurate, personalized three-dimensional (3D) digital 

representation of the cardiac anatomy. This model not 

only replicates the heart’s general morphology and 

dimensions but also incorporates structural details 

relevant to arrhythmia mechanisms [15], thereby 

establishing the foundational framework for all 

subsequent biophysical simulations [16]. 

The modeling process begins with the acquisition 

of patient medical images, such as computed 

tomography (CT) or magnetic resonance imaging 

(MRI) scans. These images are subsequently 

processed through segmentation, a procedure in which 

the contours of cardiac structures (e.g., atria and 

ventricles) are digitally identified and extracted [17]. 

The segmentation output is then converted into a 

computational mesh, forming both a 3D surface and a 

volumetric representation of the heart [18]. During this 

stage, key spatial characteristics—including chamber 

volumes, wall thickness, and other topological 

features—are quantified and encoded as numerical 

parameters for downstream analyses. 

 

2. 2 Physical Data Modeling 

The subsequent phase involves modeling 

measurable physical characteristics, focusing on 

directly acquired patient data. This stage aims to 

collect, process, and systematize cardiac dynamic 

measurements to establish a reference ground truth for 

validating the digital twin. By ensuring the precise 

replication of these datasets within the virtual model, 

this approach guarantees that the digital twin faithfully 

represents the patient's actual physiological state 

[19,20]. 

The implementation focuses on processing 

electrocardiogram (ECG) signals. Raw ECG data, 

acquired from real-time Holter monitoring or standard 

12-lead recordings, serve as the primary inputs. These 

signals undergo preprocessing to eliminate artifacts—



Herman, Annafi and Biddinika et. al, Title Written Times …   198 

such as noise and baseline wander—followed by 

feature extraction to quantify key parameters, 

including R-R intervals, QRS complex duration, and 

P-QRS-T wave morphology [21]. This physical 

modeling stage yields both cleaned ECG signals and 

their derived numerical features, which collectively 

form the validation benchmarks for assessing 

simulation model accuracy. 

 

2. 3 Data-Driven Modeling 

This phase represents the computational 

foundation of the digital twin framework, where non-

measurable electrophysiological characteristics are 

modeled using advanced numerical methods. The 

primary objective is to simulate the subcellular 

processes that underlie ECG manifestations, including 

action potential propagation and ionic current 

dynamics. 

As a data-driven model, it requires calibration 

against physical reference data specifically, measured 

ECGs to ensure simulation accuracy. This approach 

effectively bridges observed body-surface electrical 

patterns with their underlying biological mechanisms 

within the heart, establishing a closed-loop validation 

system comprising two key computational phases. 

First, the biophysical model implementation applies 

mathematical formulations governing electrical 

propagation (e.g., monodomain or bidomain 

equations) to the pre-constructed geometric mesh. 

Each mesh element incorporates cellular-level 

models, such as the Luo-Rudy ionic formulation, to 

characterize action potential dynamics. The second 

phase involves personalized calibration the core 

computational process in which initially generic 

biophysical models are iteratively refined using 

optimization algorithms. In this phase, unmeasurable 

equation parameters including tissue conductivity 

distributions and ion channel gating functions are 

systematically adjusted until the discrepancy between 

simulated and clinically recorded ECG outputs is 

minimized [21]. This inverse problem-solving 

approach ultimately yields patient-specific numerical 

estimates for these otherwise unobservable 

electrophysiological parameters. 

 

2. 4 HDTM Integration for Arrhythmia 

Twinning 

In the final stage of the modeling process, the 

three developed model components geometric, 

physical, and data-based are integrated into a single, 

cohesive Human Digital Twin (HDT) system. The 

objective of this integration is to combine the 

anatomical framework, measured physiological data, 

and calibrated biophysical simulations into a 

functional digital replica of the patient's heart [14]. By 

unifying these elements, the HDT system becomes not 

merely a static representation but a dynamic model 

capable of mimicking the individual's specific 

electrophysiological behavior [21]. 

The conceptual workflow of this integrated 

system commences with an initialization phase, 

wherein the Geometrical Model (a 3D framework) is 

constructed from patient-specific MRI or CT data. 

Subsequently, the system enters the calibration stage, 

during which ECG data from the physical model serve 

as input for the Data-Driven Model. This model then 

executes an optimization process to adjust its 

biophysical parameters until the simulated ECG aligns 

with the patient's actual ECG. Once calibrated, the 

digital twin can continuously synchronize with new 

ECG data to maintain its accuracy. Finally, the 

finalized digital twin is prepared to deliver a range of 

analytical services, such as the visualization of 

electrical wave propagation, simulations to test for 

arrhythmia triggers, and predictive analysis to identify 

vulnerable cardiac regions. 

3 RESULT 

This section presents the results of the systematic 

development process for the Human Digital Twin 

(HDT) concept. The exposition begins with the 

outcomes from the geometric and physical modeling 

phases, followed by those from the data-driven 

modeling. We then provide a comprehensive 

justification for all models based on the existing 

literature, establishing their roles as essential 

components for arrhythmia twinning. Finally, the 

study demonstrates the integrated implementation of 

these models into an ECG-based arrhythmia analysis 

service, illustrating how this synthesized framework 

offers a viable solution for the prevention and 

management of arrhythmic disorders. 

 

3. 1 Geometrical Data Model 

This subsection presents the results of the 

geometric modeling phase, which established the 

foundational anatomical framework for the Human 

Digital Twin. The process began with the acquisition 

of patient-specific cardiovascular data using high-

resolution medical imaging technologies, including 

magnetic resonance imaging (MRI), computed 

tomography (CT), and echocardiography [22]. These 

modalities captured detailed morphological 

information of the cardiac chambers, major vessels, 

and surrounding structures in both static and dynamic 

states. 

The acquired imaging datasets were subsequently 

processed using advanced medical imaging software, 

such as 3D Slicer, Mimics, or comparable 

segmentation and reconstruction tools [23]. The 

software executed a sequential workflow consisting of 

three primary stages: (1) image segmentation to 

delineate cardiac structures from surrounding tissues; 

(2) surface reconstruction to generate a polygonal 

mesh; and (3) mesh refinement and smoothing to 

produce an anatomically accurate and optimized 3D 

representation. This process yielded a patient-specific, 

three-dimensional (3D) heart model that faithfully 

replicates the subject's unique cardiac morphology. 
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As illustrated in Figure 2, the reconstructed 3D 

model delineates both the heart's anatomical condition 

and the spatial relationships between its structures 

such as the proportional dimensions of the left 

ventricle relative to the aorta, and the positional 

orientation of the pulmonary veins in relation to the 

atrial walls. This detailed visualization facilitates 

clinical assessment of spatial alignment, detection of 

morphological abnormalities, and quantitative 

comparison of dimensional ratios between anatomical 

components. 

 

 
Figure 2. 3D Model of Heart 

 

The reconstructed 3D model functions as the 

foundational visualization layer within the digital 

cockpit. For instance, regions of a patient's vasculature 

exhibiting abnormally high pressure can be 

highlighted in red directly onto the model, providing 

an intuitive, color-coded indicator. This integration 

transforms the anatomical reconstruction from a static 

representation into a dynamic clinical tool capable of 

real-time data overlay, thereby establishing a critical 

link between anatomical geometry and ongoing 

physiological monitoring. 

 
Table 1. Geometrical Data Model 

Characteristic Unit Measurement Sources 

Left Atrial 

Volume 

mL Echocardiography, MRI 

Ventricular 

Wall 

mm MRI 

Myocardial 

Fiber 

Orientation 

vector DRI-MRI 

Cardiac 

Chamber 

Geometry 

3D 

mesh 

MRI, CT 

Aortic 

Geometry 

mm CT, MRI 

Epicardial 

Surface 

cm2 3D reconstruction from 

CR/MRI 

Conduction 

Pathway 

Length 

mm Electrophysiological 

simulation 

The quantitative outputs of the geometrical 

modeling process are summarized in Table 1, which 

details parameters such as Left Atrial Volume (LAV), 

Ventricular Wall Thickness, Myocardial Fiber 

Orientation, and Conduction Pathway Length. For 

example, the measured LAV of 45.8 mL, as reported 

by Qian et al. [13], is closely associated with elevated 

atrial fibrillation risk. These numerical characteristics 

serve as critical inputs for subsequent physical 

modeling and data-driven simulations, ensuring that 

all predictive analyses are grounded in accurate, 

patient-specific anatomical data. 

 

3. 2 Physical Data Model 

Following the establishment of spatial 

characteristics through geometric modeling, the next 

critical step involves obtaining a representation of the 

physical characteristics that describe the real-time 

physiological state of the cardiovascular system. At 

this stage, physical entities—particularly the patient's 

circulatory and cardiac functions—are measured using 

clinically approved medical technologies. 

Electrocardiography, acquired via multi-lead clinical 

ECG machines, Holter monitors, or similar wearable 

devices, is used to capture the heart's electrical activity 

with high temporal resolution. Blood pressure is 

measured non-invasively using an automatic 

sphygmomanometer, while respiratory rate is recorded 

using capnography or a breathing belt. Core body 

temperature is obtained with a calibrated digital 

thermometer. These direct measurements provide 

highly specific physiological characteristics of the 

patient, which serve as ground truth for validating the 

computational twin. 

The physical modeling process begins with the 

continuous or episodic acquisition of these parameters. 

This is followed by signal preprocessing including 

noise filtering and baseline correction and temporal 

alignment with the patient’s anatomical reference 

frame, as established during geometric modeling. The 

resulting dataset comprises key electrophysiological 

metrics such as heart rate (HR), QT interval 

(representing ventricular repolarization), PR interval 

(indicating atrioventricular conduction delay), and 

QRS complex duration (reflecting ventricular 

depolarization velocity). Additional parameters, such 

as heart rate variability (HRV), are derived from the 

ECG signal to assess autonomic nervous system 

modulation; reduced HRV is a known biomarker 

associated with increased arrhythmic risk. 

Table 2 summarizes the complete set of measured 

physiological parameters in the Physical Data Model. 

 
Table 2. Physical Data Model 

Characteristic Unit 
Measurement 

Sources 

Heart Rate bpm ECG, wearable devices 

QT Interval ms ECG 

PR Interval ms ECG 

QRS Duration ms ECG 

Blood Pressure mmHg Blood Pressure Monitor 

Respiration Rate bpm Capnography, 

wearables 

Body Temperature °C Thermometer 

 

The physical model provides a direct 

representation of the patient’s functional state, 

translating raw measurements into clinically relevant 

parameters that can be visualized, tracked, and 

analyzed over time. When integrated into the HDT 
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cockpit, these parameters can be overlaid onto the 3D 

heart model to provide an intuitive depiction of both 

anatomical and physiological conditions. For instance, 

elevated blood pressure can be visualized within the 

3D vascular structures using a red color gradient. This 

allows clinicians to observe the spatial context of the 

abnormality—such as its relationship to the size and 

position of the heart and aorta—thereby enhancing 

diagnostic interpretation and clinical decision-making. 

 

3. 3 Data-Driven Model 

Building upon the foundation of geometrical and 

physical data, the research advances to the 

computational phase: data-driven modeling. This 

phase aims to derive characteristics of the cardiac 

system that cannot be directly measured using 

conventional clinical instruments [24]. These latent 

parameters are inferred by processing and integrating 

both geometrical and physical datasets through 

advanced computational techniques, including 

numerical simulations, statistical modeling, and 

machine learning algorithms. This approach enables 

the high-precision estimation of key 

electrophysiological properties such as tissue 

conductivity, cellular refractory periods, and region-

specific electrical anisotropy which are critical for 

arrhythmia modeling despite being unmeasurable in 

vivo [25]. 

The computational workflow initiates by 

inputting the 3D anatomical mesh (derived from 

geometric modeling) and time-series physiological 

signals (obtained from physical modeling) into a 

multi-stage computational pipeline. This pipeline 

applies signal preprocessing, spatiotemporal 

alignment, and feature extraction, followed by 

inference using machine learning models trained on 

large-scale cardiac datasets. The models subsequently 

generate derived outputs such as spatial conduction 

velocity maps, distributions of electrophysiological 

properties, and patient-specific risk indices [26]. These 

results facilitate a deeper and more individualized 

representation of the patient’s cardiovascular state, 

capturing aspects that are neither directly visible nor 

measurable through standard clinical practice. 

Table 3 summarizes the principal characteristics 

generated through data-driven modeling. 

 
Table 3. Data-Driven Model 

Characteristic Unit 
Measurement 

Sources 

Conduction 

velocity map 

mm/ms Machine 

Learning 

Arrhythmia 

Risk Score 

0-1 scale Machine 

Learning 

Myocardial 

Scar 

Probability 

%/3D 

segmentation 

Deep Learning  

Electrophysiolo

gical Tissue 

Map 

3D property grid Machine 

Learning 

Latent Patient 

Embedding 

Vector Machine 

Learning 

Drug Response 

Simulation 

Time series Machine 

Learning 

Pacing 

Optimization 

Output 

ms/3D 

coordinate 

Machine 

Learning 

 

Among the most clinically impactful outputs is 

the conduction velocity (CV) map, which visualizes 

the spatial distribution of electrical propagation speeds 

across the myocardium. This map reveals regions of 

abnormally slow conduction, which are well 

established substrates for re-entrant arrhythmias. 

Another key output, the arrhythmia risk score, 

provides a probabilistic estimate of the likelihood of 

future arrhythmic events, enabling stratified patient 

monitoring and personalized intervention strategies. 

Furthermore, the myocardial scar probability map 

derived through AI-driven segmentation of medical 

images generates a spatial probability distribution of 

fibrotic or scarred tissue. This output is particularly 

crucial for planning targeted ablation therapy 

procedures. 

Data-driven modeling enables a richer 

representation of patient-specific cardiac function by 

transforming abstract computational inferences into 

actionable visualizations and predictive indicators. 

When integrated into the HDT cockpit, these derived 

parameters are overlaid onto the 3D heart model. This 

integration allows clinicians to visualize critical 

information—such as highlighting regions of high scar 

probability in contrasting colors or annotating 

predicted arrhythmogenic zones—thereby providing a 

holistic, personalized, and predictive perspective on 

the patient’s cardiovascular health. 

 

3. 4 Digital Twin Model on Cockpit 

The integration of the three modeling domains—

geometric, physical, and data-driven—is realized 

within a unified user interface termed the HDT 

Cockpit (Figure 3). This cockpit consolidates 

multifaceted cardiovascular information into a single, 

clinically actionable platform. It enables clinicians to 

simultaneously visualize cardiac anatomy, monitor 

real-time physiological data, and review predictive 

computational outputs, thereby providing a 

comprehensive overview of the patient's 

cardiovascular status. 

 
Figure 3. Cardio Twin as DT Cockpit 

 

At the core of the cockpit interface is the 

personalized 3D heart model, generated through 
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geometric modeling. Derived from patient-specific 

imaging data, this model accurately represents the 

patient's cardiac anatomy in high spatial detail, 

including atrial and ventricular geometry, wall 

thickness, and conduction system pathways. Its 

integration into the cockpit enables intuitive spatial 

analysis of structural abnormalities that may 

contribute to arrhythmogenesis. 

Surrounding the anatomical model are real-time 

monitoring panels that display parameters acquired 

through physical modeling. These panels present 

direct physiological measurements—including ECG 

waveforms, heart rate, blood pressure, and heart rate 

variability (HRV). The integration of these live data 

streams into the cockpit provides clinicians with 

immediate access to the patient's current functional 

state, which is continuously updated during 

monitoring. 

In addition to structural and measured 

physiological data, the cockpit displays predictive and 

inferred parameters obtained through Data-Driven 

Modeling. These computational outputs include the 

Conduction Velocity Map, Arrhythmia Risk Score, 

estimated myocardial wall stress, and predicted 

timelines for arrhythmia occurrence. Such information 

is derived by processing both geometrical and physical 

datasets using AI-driven algorithms, providing 

insights that are otherwise unattainable through direct 

measurement alone. 

 

 
Figure 1. DT Cockpit for Simulation 

 

Figure 4 highlights the Arrhythmia Simulation 

Control Panel, an interactive feature within the 

cockpit. Through this panel, clinicians can simulate 

electrophysiological conditions by applying virtual 

stimuli such as an ectopic beat at specific atrial or 

ventricular locations. The simulation then calculates 

electrical signal propagation based on the patient’s 

calibrated HDT model, displaying the resulting 

conduction patterns on the 3D heart. This process 

supports the analysis of re-entry circuits and the 

evaluation of potential interventions, including 

ablation or pharmacological treatments, prior to real-

world implementation. 

In summary, the HDT Cockpit serves as the 

culmination of the proposed modeling concept. It 

integrates Geometrical Modeling for anatomical 

visualization, Physical Modeling for real-time 

physiological monitoring, and Data-Driven Modeling 

for predictive and scenario-based analysis. This 

unified platform not only consolidates diverse data 

types but also transforms arrhythmia management 

from a reactive approach to one that is predictive, 

preventive, and personalized. 

4 DISCUSSION 

This research introduces an integrated HDT 

framework designed to transform arrhythmia analysis 

from reactive diagnosis toward a proactive, 

personalized, and predictive approach. Its strength lies 

in the seamless integration of three modeling domains 

geometrical, physics-based, and data-driven 

culminating in the HDT on Cockpit Model.  

In this framework, geometrical modeling 

establishes a patient-specific anatomical foundation, 

essential for realistic simulations. Physics-based 

modeling anchors the digital twin to real-time 

physiological measurements, ensuring 

synchronization with the patient’s actual condition. 

Data-driven modeling delivers the most significant 

leap, using measurable data such as ECG to infer 

critical but unmeasurable biophysical parameters, 

including conduction velocity maps and scar 

probability. Together, these three layers convert a 

static anatomical model into a dynamic, functional, 

and clinically relevant replica.  

The Cockpit concept enables clinicians to not only 

visualize the patient’s heart in 3D but also simulate 

arrhythmia triggers, test interventions, and forecast 

outcomes, directly supporting precision medicine. 

While the current work remains at the conceptual 

stage, its integration of multiple modeling approaches 

into a unified workflow marks a significant 

advancement in digital cardiology and lays the 

groundwork for future functional prototypes and 

clinical validation.  

5 CONCLUSION 

This research has successfully formulated a 

conceptual framework for a Human Digital Twin 

(HDT) designed for ECG-based arrhythmia analysis, 

employing a tripartite modeling approach: geometric, 

physics-based, and data-driven. The geometric 

modeling component successfully reconstructed the 

anatomical foundation of the heart into a personalized 

three-dimensional model. Concurrently, the physics-

based modeling quantified measurable physiological 

parameters from the patient, which served as the 

ground truth for validation. Subsequently, the data-

driven modeling yielded predictive insights and latent 

characteristics, such as conduction velocity maps and 

risk scores, which are not obtainable through 

conventional measurement techniques.  

The result of this research is the integration of 

these three models into an initial prototype of Human 

Digital Twin Cockpit. The cockpit serves as the 
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primary interface between users and the Human 

Digital Twin system. It effectively merges anatomical 

representation, real-time functional data, and 

predictive analytics into a single, unified interface. 

Thus, this study successfully demonstrates that the 

Human Digital Twin concept can overcome the 

limitations of conventional ECG diagnostics, which 

are frequently reactive, by providing a proactive 

platform for simulation, personalized risk analysis, 

and the evaluation of virtual interventions. 

The implication of this concept is that it paves the 

way for precision medicine in arrhythmia 

management, wherein therapeutic strategies can be 

optimized for each individual. Although the present 

study focuses on developing the conceptual 

framework, the recommended subsequent steps are the 

implementation of a more functional prototype of the 

"HDT cockpit" and the execution of clinical validation 

using patient data to assess its effectiveness in real-

world applications. 
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