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Abstract

Heart disease in all its forms remains a significant health threat. Arrhythmia is a type of heart disease whose
diagnosis and treatment still primarily rely on conventional electrocardiogram-based diagnosis. However, this
approach is limited, as it is reactive and captures cardiac conditions only at the time of electrocardiogram
measurement, making it unable to continuously and individually monitor arrhythmia progression for each patient.
This study explores digital twin technology and develops human digital twin models for the treatment of
arrhythmia patients. The modeling framework integrates three core components: geometrical modeling, physical
modeling, and data-driven modeling to represent the human heart and cardiovascular system in a digital
environment. The output of this integrative process has been implemented in the initial prototype of the Human
Digital Twin Cockpit, which is designed to treat arrhythmia. This prototype enhances the existing diagnosis and
treatment, and also incorporates a proactive simulation system. Evaluation and system testing have successfully
demonstrated their ability to integrate geometric data from medical imaging and physical data from
electrophysiological sensors to predict arrhythmia in various scenarios.
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(5D) framework, incorporating two crucial additional

1 INTRODUCTION components: digital twin data and services. Data can

Coronary artery disease remains the leading cause be aggregated and integrated from multiple sources,
of death worldwide, including in Indonesia, with a encompassing both  historical and real-time
steadily increasing annual prevalence [1,2]. This high information. Services comprise various intelligent
mortality rate underscores the urgent need for more functions—including simulations, predictions, and
effective methods for early detection and prevention optimizations—executable on the virtual model [7]
[3]. Although the electrocardiogram (ECG) has long (see Figure 1).
been the gold standard for diagnosing cardiac rhythm The Human Digital Twin (HDT) is a virtual
disorders (arrhythmias), its utility is often limited to replica of a patient’s heart that integrates medical
that of a reactive diagnostic tool, as it can only record imaging, physiological data, and real-time biosignals
cardiac activity at the time of measurement [4]. This to model its structure and function. By enabling
presents a significant challenge because many continuous monitoring, simulation, and risk
arrhythmic events are sporadic and may be missed prediction, HDT overcomes the limitations of
during brief recording sessions [5]. conventional arrhythmia diagnosis and treatment,

To address these limitations, the concept of a shifting healthcare from a reactive intervention model
Digital Twin (DT) offers a transformative approach. to a paradigm of personalized prevention. Through the
Initially, DT was defined by three key dimensions: the creation of a continuously updated virtual heart replica
physical entity, representing real-world objects; the that incorporates an individual's physiological data, we
virtual entity, which serves as their digital can not only monitor current conditions but also
representation; and the connections that link these two simulate specific scenarios to predict future
dimensions together [6,7,8]. However, this model has arrhythmia risks and even virtually test the
evolved into a more comprehensive five-dimensional effectiveness of medical interventions prior to their
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clinical application [9,10]. This capability represents a
concrete manifestation of the services dimension
within the DT framework.
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Figure 1. Digital Twin Evolution

The successful development of an accurate and
functional Digital Twin critically depends on the
ability to comprehensively model the physical object's
various characteristics through multiple approaches.
This process must incorporate diverse perspectives to
adequately capture the complexity of biological
systems like the human heart. A robust framework
requires the integration of, at a minimum, three
fundamental modeling types [11]. First, geometric
modeling encompasses the spatial data needed to
reconstruct an individual's unique cardiac anatomy,
typically derived from medical imaging modalities
like MRI or CT scans. Second, physical modeling
involves directly measurable physiological parameters
obtained through clinical instruments or wearable
sensors. Finally, data-driven modeling incorporates
computationally derived parameters that cannot be
directly measured but are inferred through biophysical
simulations and model calibration against empirical
data.

To ensure that each modeling domain captures the
necessary level of detail, the study commenced with an
extensive literature review to identify the critical data
and parameters required for accurate arrhythmia
modeling. This systematic examination aimed to
compile the essential electrophysiological information
needed to replicate both normal and arrhythmic
cardiac conditions within the Human Digital Twin
(HDT)  framework  [12,13].  Through this
comprehensive review, three primary categories of
essential data were identified: (1) detailed anatomical
data encompassing the dimensions and morphology of
all four cardiac chambers, along with the precise
locations of key conduction system components,
including the sinoatrial node and atrioventricular node;
(2) measurable physiological data, particularly multi-
lead ECG signals that capture the heart's electrical
activity from body surface recordings; and (3) derived
biophysical parameters that cannot be directly
measured, including intrinsic tissue properties such as

electrical conductivity, refractory periods (cellular
recovery time), and ion channel characteristics that
govern cellular action potentials [14].

2  RESEARCH METHOD

This section details the methodological approach
for designing a Human Digital Twin (HDT) for
arrhythmia analysis. The process focuses on modeling
the various characteristics of the physical entity—the
patient's heart—to develop an HDT service capable of
performing simulations and analytical functions. Our
modeling strategy decomposes the heart's complex
characteristics into three distinct domains: (1)
geometric, (2)  physical, and (3) data-
driven/computational, which are subsequently
integrated into a unified system.

2.1 Geometrical Data Modeling

Following the identification of data requirements,
the subsequent phase involves modeling the spatial
characteristics of the physical entity—the patient’s
heart. The objective of this stage is to construct an
accurate, personalized three-dimensional (3D) digital
representation of the cardiac anatomy. This model not
only replicates the heart’s general morphology and
dimensions but also incorporates structural details
relevant to arrhythmia mechanisms [15], thereby
establishing the foundational framework for all
subsequent biophysical simulations [16].

The modeling process begins with the acquisition
of patient medical images, such as computed
tomography (CT) or magnetic resonance imaging
(MRI) scans. These images are subsequently
processed through segmentation, a procedure in which
the contours of cardiac structures (e.g., atria and
ventricles) are digitally identified and extracted [17].
The segmentation output is then converted into a
computational mesh, forming both a 3D surface and a
volumetric representation of the heart [18]. During this
stage, key spatial characteristics—including chamber
volumes, wall thickness, and other topological
features—are quantified and encoded as numerical
parameters for downstream analyses.

2.2 Physical Data Modeling

The subsequent phase involves modeling
measurable physical characteristics, focusing on
directly acquired patient data. This stage aims to
collect, process, and systematize cardiac dynamic
measurements to establish a reference ground truth for
validating the digital twin. By ensuring the precise
replication of these datasets within the virtual model,
this approach guarantees that the digital twin faithfully
represents the patient's actual physiological state
[19,20].

The implementation focuses on processing
electrocardiogram (ECQG) signals. Raw ECG data,
acquired from real-time Holter monitoring or standard
12-lead recordings, serve as the primary inputs. These
signals undergo preprocessing to eliminate artifacts—
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such as noise and baseline wander—followed by
feature extraction to quantify key parameters,
including R-R intervals, QRS complex duration, and
P-QRS-T wave morphology [21]. This physical
modeling stage yields both cleaned ECG signals and
their derived numerical features, which collectively
form the wvalidation benchmarks for assessing
simulation model accuracy.

2.3 Data-Driven Modeling

This phase represents the computational
foundation of the digital twin framework, where non-
measurable electrophysiological characteristics are
modeled using advanced numerical methods. The
primary objective is to simulate the subcellular
processes that underlie ECG manifestations, including
action potential propagation and ionic current
dynamics.

As a data-driven model, it requires calibration
against physical reference data specifically, measured
ECGs to ensure simulation accuracy. This approach
effectively bridges observed body-surface electrical
patterns with their underlying biological mechanisms
within the heart, establishing a closed-loop validation
system comprising two key computational phases.
First, the biophysical model implementation applies
mathematical formulations governing electrical
propagation (e.g., monodomain or bidomain
equations) to the pre-constructed geometric mesh.

Each mesh element incorporates cellular-level
models, such as the Luo-Rudy ionic formulation, to
characterize action potential dynamics. The second
phase involves personalized calibration the core
computational process in which initially generic
biophysical models are iteratively refined using
optimization algorithms. In this phase, unmeasurable
equation parameters including tissue conductivity
distributions and ion channel gating functions are
systematically adjusted until the discrepancy between
simulated and clinically recorded ECG outputs is
minimized [21]. This inverse problem-solving
approach ultimately yields patient-specific numerical
estimates for these otherwise unobservable
electrophysiological parameters.

2.4 HDTM Integration for Arrhythmia

Twinning

In the final stage of the modeling process, the
three developed model components geometric,
physical, and data-based are integrated into a single,
cohesive Human Digital Twin (HDT) system. The
objective of this integration is to combine the
anatomical framework, measured physiological data,
and calibrated biophysical simulations into a
functional digital replica of the patient's heart [14]. By
unifying these elements, the HDT system becomes not
merely a static representation but a dynamic model
capable of mimicking the individual's specific
electrophysiological behavior [21].

The conceptual workflow of this integrated
system commences with an initialization phase,
wherein the Geometrical Model (a 3D framework) is
constructed from patient-specific MRI or CT data.
Subsequently, the system enters the calibration stage,
during which ECG data from the physical model serve
as input for the Data-Driven Model. This model then
executes an optimization process to adjust its
biophysical parameters until the simulated ECG aligns
with the patient's actual ECG. Once calibrated, the
digital twin can continuously synchronize with new
ECG data to maintain its accuracy. Finally, the
finalized digital twin is prepared to deliver a range of
analytical services, such as the visualization of
electrical wave propagation, simulations to test for
arrhythmia triggers, and predictive analysis to identify
vulnerable cardiac regions.

3  RESULT

This section presents the results of the systematic
development process for the Human Digital Twin
(HDT) concept. The exposition begins with the
outcomes from the geometric and physical modeling
phases, followed by those from the data-driven
modeling. We then provide a comprehensive
justification for all models based on the existing
literature, establishing their roles as essential
components for arrhythmia twinning. Finally, the
study demonstrates the integrated implementation of
these models into an ECG-based arrhythmia analysis
service, illustrating how this synthesized framework
offers a viable solution for the prevention and
management of arrhythmic disorders.

3.1 Geometrical Data Model

This subsection presents the results of the
geometric modeling phase, which established the
foundational anatomical framework for the Human
Digital Twin. The process began with the acquisition
of patient-specific cardiovascular data using high-
resolution medical imaging technologies, including
magnetic resonance imaging (MRI), computed
tomography (CT), and echocardiography [22]. These
modalities  captured  detailed  morphological
information of the cardiac chambers, major vessels,
and surrounding structures in both static and dynamic
states.

The acquired imaging datasets were subsequently
processed using advanced medical imaging software,
such as 3D Slicer, Mimics, or comparable
segmentation and reconstruction tools [23]. The
software executed a sequential workflow consisting of
three primary stages: (1) image segmentation to
delineate cardiac structures from surrounding tissues;
(2) surface reconstruction to generate a polygonal
mesh; and (3) mesh refinement and smoothing to
produce an anatomically accurate and optimized 3D
representation. This process yielded a patient-specific,
three-dimensional (3D) heart model that faithfully
replicates the subject's unique cardiac morphology.
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As illustrated in Figure 2, the reconstructed 3D
model delineates both the heart's anatomical condition
and the spatial relationships between its structures
such as the proportional dimensions of the left
ventricle relative to the aorta, and the positional
orientation of the pulmonary veins in relation to the
atrial walls. This detailed visualization facilitates
clinical assessment of spatial alignment, detection of
morphological —abnormalities, and quantitative
comparison of dimensional ratios between anatomical
components.
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Figure 2. 3D Model of Hear

The reconstructed 3D model functions as the
foundational visualization layer within the digital
cockpit. For instance, regions of a patient's vasculature
exhibiting abnormally high pressure can be
highlighted in red directly onto the model, providing
an intuitive, color-coded indicator. This integration
transforms the anatomical reconstruction from a static
representation into a dynamic clinical tool capable of
real-time data overlay, thereby establishing a critical
link between anatomical geometry and ongoing
physiological monitoring.

Table 1. Geometrical Data Model

Characteristic ~ Unit Measurement Sources
Left Atrial mL Echocardiography, MRI

Volume

Ventricular mm MRI

Wall

Myocardial vector DRI-MRI

Fiber

Orientation

Cardiac 3D MRI, CT

Chamber mesh

Geometry

Aortic mm CT, MRI

Geometry

Epicardial cm? 3D reconstruction from
Surface CR/MRI
Conduction mm Electrophysiological
Pathway simulation

Length

The quantitative outputs of the geometrical
modeling process are summarized in Table 1, which
details parameters such as Left Atrial Volume (LAV),
Ventricular Wall Thickness, Myocardial Fiber
Orientation, and Conduction Pathway Length. For
example, the measured LAV of 45.8 mL, as reported
by Qian et al. [13], is closely associated with elevated
atrial fibrillation risk. These numerical characteristics

serve as critical inputs for subsequent physical
modeling and data-driven simulations, ensuring that
all predictive analyses are grounded in accurate,
patient-specific anatomical data.

3. 2 Physical Data Model

Following the establishment of spatial
characteristics through geometric modeling, the next
critical step involves obtaining a representation of the
physical characteristics that describe the real-time
physiological state of the cardiovascular system. At
this stage, physical entities—particularly the patient's
circulatory and cardiac functions—are measured using
clinically approved medical technologies.
Electrocardiography, acquired via multi-lead clinical
ECG machines, Holter monitors, or similar wearable
devices, is used to capture the heart's electrical activity
with high temporal resolution. Blood pressure is
measured non-invasively using an automatic
sphygmomanometer, while respiratory rate is recorded
using capnography or a breathing belt. Core body
temperature is obtained with a calibrated digital
thermometer. These direct measurements provide
highly specific physiological characteristics of the
patient, which serve as ground truth for validating the
computational twin.

The physical modeling process begins with the
continuous or episodic acquisition of these parameters.
This is followed by signal preprocessing including
noise filtering and baseline correction and temporal
alignment with the patient’s anatomical reference
frame, as established during geometric modeling. The
resulting dataset comprises key electrophysiological
metrics such as heart rate (HR), QT interval
(representing ventricular repolarization), PR interval
(indicating atrioventricular conduction delay), and
QRS complex duration (reflecting ventricular
depolarization velocity). Additional parameters, such
as heart rate variability (HRV), are derived from the
ECG signal to assess autonomic nervous system
modulation; reduced HRV is a known biomarker
associated with increased arrhythmic risk.

Table 2 summarizes the complete set of measured
physiological parameters in the Physical Data Model.

Table 2. Physical Data Model

Characteristic Unit Measurement
Sources

Heart Rate bpm ECG, wearable devices

QT Interval ms ECG

PR Interval ms ECG

QRS Duration ms ECG

Blood Pressure mmHg  Blood Pressure Monitor

Respiration Rate bpm Capnography,
wearables
Body Temperature  °C Thermometer
The physical model provides a direct

representation of the patient’s functional state,
translating raw measurements into clinically relevant
parameters that can be visualized, tracked, and
analyzed over time. When integrated into the HDT
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cockpit, these parameters can be overlaid onto the 3D
heart model to provide an intuitive depiction of both
anatomical and physiological conditions. For instance,
elevated blood pressure can be visualized within the
3D vascular structures using a red color gradient. This
allows clinicians to observe the spatial context of the
abnormality—such as its relationship to the size and
position of the heart and aorta—thereby enhancing
diagnostic interpretation and clinical decision-making.

3. 3 Data-Driven Model

Building upon the foundation of geometrical and
physical data, the research advances to the
computational phase: data-driven modeling. This
phase aims to derive characteristics of the cardiac
system that cannot be directly measured using
conventional clinical instruments [24]. These latent
parameters are inferred by processing and integrating
both geometrical and physical datasets through
advanced computational techniques, including
numerical simulations, statistical modeling, and
machine learning algorithms. This approach enables
the high-precision estimation of key
electrophysiological ~properties such as tissue
conductivity, cellular refractory periods, and region-
specific electrical anisotropy which are critical for
arrhythmia modeling despite being unmeasurable in
vivo [25].

The computational workflow initiates by
inputting the 3D anatomical mesh (derived from
geometric modeling) and time-series physiological
signals (obtained from physical modeling) into a
multi-stage computational pipeline. This pipeline
applies  signal  preprocessing,  spatiotemporal
alignment, and feature extraction, followed by
inference using machine learning models trained on
large-scale cardiac datasets. The models subsequently
generate derived outputs such as spatial conduction
velocity maps, distributions of electrophysiological
properties, and patient-specific risk indices [26]. These
results facilitate a deeper and more individualized
representation of the patient’s cardiovascular state,
capturing aspects that are neither directly visible nor
measurable through standard clinical practice.

Table 3 summarizes the principal characteristics
generated through data-driven modeling.

Table 3. Data-Driven Model

Characteristic ~ Unit Measurement
Sources

Conduction mm/ms Machine

velocity map Learning

Arrhythmia 0-1 scale Machine

Risk Score Learning

Myocardial %/3D Deep Learning

Scar segmentation

Probability

Electrophysiolo 3D property grid ~ Machine

gical  Tissue Learning

Map

Latent Patient Vector Machine

Embedding Learning

Drug Response  Time series Machine
Simulation Learning
Pacing ms/3D Machine
Optimization coordinate Learning
Output

Among the most clinically impactful outputs is
the conduction velocity (CV) map, which visualizes
the spatial distribution of electrical propagation speeds
across the myocardium. This map reveals regions of
abnormally slow conduction, which are well
established substrates for re-entrant arrhythmias.
Another key output, the arrhythmia risk score,
provides a probabilistic estimate of the likelihood of
future arrhythmic events, enabling stratified patient
monitoring and personalized intervention strategies.
Furthermore, the myocardial scar probability map
derived through Al-driven segmentation of medical
images generates a spatial probability distribution of
fibrotic or scarred tissue. This output is particularly
crucial for planning targeted ablation therapy
procedures.

Data-driven modeling enables a richer
representation of patient-specific cardiac function by
transforming abstract computational inferences into
actionable visualizations and predictive indicators.
When integrated into the HDT cockpit, these derived
parameters are overlaid onto the 3D heart model. This
integration allows clinicians to visualize critical
information—such as highlighting regions of high scar
probability in contrasting colors or annotating
predicted arrhythmogenic zones—thereby providing a
holistic, personalized, and predictive perspective on
the patient’s cardiovascular health.

3. 4 Digital Twin Model on Cockpit

The integration of the three modeling domains—
geometric, physical, and data-driven—is realized
within a unified user interface termed the HDT
Cockpit (Figure 3). This cockpit consolidates
multifaceted cardiovascular information into a single,
clinically actionable platform. It enables clinicians to
simultaneously visualize cardiac anatomy, monitor
real-time physiological data, and review predictive

computational ~ outputs, thereby providing a
comprehensive  overview of the  patient's
cardiovascular status.

B cardioTwin w1 Destboard  Simuiations  Hstory  Anayic - Patient: John Doe _.Q

m et Rate [+ Seodresze Q) Orypemsst * e |
76 129/80 99 99.5

Real-time ECG Monitoring

Figure 3. Cardio Twin as DT Cockpit

At the core of the cockpit interface is the
personalized 3D heart model, generated through
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geometric modeling. Derived from patient-specific
imaging data, this model accurately represents the
patient's cardiac anatomy in high spatial detail,
including atrial and ventricular geometry, wall
thickness, and conduction system pathways. Its
integration into the cockpit enables intuitive spatial
analysis of structural abnormalities that may
contribute to arrhythmogenesis.

Surrounding the anatomical model are real-time
monitoring panels that display parameters acquired
through physical modeling. These panels present
direct physiological measurements—including ECG
waveforms, heart rate, blood pressure, and heart rate
variability (HRV). The integration of these live data
streams into the cockpit provides clinicians with
immediate access to the patient's current functional
state, which is continuously updated during
monitoring.

In addition to structural and measured
physiological data, the cockpit displays predictive and
inferred parameters obtained through Data-Driven
Modeling. These computational outputs include the
Conduction Velocity Map, Arrhythmia Risk Score,
estimated myocardial wall stress, and predicted
timelines for arrhythmia occurrence. Such information
is derived by processing both geometrical and physical
datasets using Al-driven algorithms, providing
insights that are otherwise unattainable through direct
measurement alone.

Arrhythmia Simulation Controls Pattern Analysis & Alerts

Condition Type
& Normal Rhythm Detected

Normal Sinus Rhythm v Regular sinus thythm with normal intervals

Key Measurements.
Heart Rate (BPM) Severity
RR Interval QT Interval

833 ms 400 ms

Simulation Duration
P Wave Duration ST Elevation

. 10 mi
308 m & min 0 min 10 ms Normal

Trigger Events

Al Classification
Exercise Stress
Medication Response Normal Sinus Rhythm — o5

Atrial Fibrilla

Electrolyte Imbalance

Start Simulation

Figure 1. DT Cockpit for Simulation

Other Arrhythmias 2

Figure 4 highlights the Arrhythmia Simulation
Control Panel, an interactive feature within the
cockpit. Through this panel, clinicians can simulate
electrophysiological conditions by applying virtual
stimuli such as an ectopic beat at specific atrial or
ventricular locations. The simulation then calculates
electrical signal propagation based on the patient’s
calibrated HDT model, displaying the resulting
conduction patterns on the 3D heart. This process
supports the analysis of re-entry circuits and the
evaluation of potential interventions, including
ablation or pharmacological treatments, prior to real-
world implementation.

In summary, the HDT Cockpit serves as the
culmination of the proposed modeling concept. It

integrates Geometrical Modeling for anatomical
visualization, Physical Modeling for real-time
physiological monitoring, and Data-Driven Modeling
for predictive and scenario-based analysis. This
unified platform not only consolidates diverse data
types but also transforms arrhythmia management
from a reactive approach to one that is predictive,
preventive, and personalized.

4  DISCUSSION

This research introduces an integrated HDT
framework designed to transform arrhythmia analysis
from reactive diagnosis toward a proactive,
personalized, and predictive approach. Its strength lies
in the seamless integration of three modeling domains
geometrical,  physics-based, and  data-driven
culminating in the HDT on Cockpit Model.

In this framework, geometrical modeling
establishes a patient-specific anatomical foundation,
essential for realistic simulations. Physics-based
modeling anchors the digital twin to real-time
physiological measurements, ensuring
synchronization with the patient’s actual condition.
Data-driven modeling delivers the most significant
leap, using measurable data such as ECG to infer
critical but unmeasurable biophysical parameters,
including conduction velocity maps and scar
probability. Together, these three layers convert a
static anatomical model into a dynamic, functional,
and clinically relevant replica.

The Cockpit concept enables clinicians to not only
visualize the patient’s heart in 3D but also simulate
arrhythmia triggers, test interventions, and forecast
outcomes, directly supporting precision medicine.
While the current work remains at the conceptual
stage, its integration of multiple modeling approaches
into a unified workflow marks a significant
advancement in digital cardiology and lays the
groundwork for future functional prototypes and
clinical validation.

5  CONCLUSION

This research has successfully formulated a
conceptual framework for a Human Digital Twin
(HDT) designed for ECG-based arrhythmia analysis,
employing a tripartite modeling approach: geometric,
physics-based, and data-driven. The geometric
modeling component successfully reconstructed the
anatomical foundation of the heart into a personalized
three-dimensional model. Concurrently, the physics-
based modeling quantified measurable physiological
parameters from the patient, which served as the
ground truth for validation. Subsequently, the data-
driven modeling yielded predictive insights and latent
characteristics, such as conduction velocity maps and
risk scores, which are not obtainable through
conventional measurement techniques.

The result of this research is the integration of
these three models into an initial prototype of Human
Digital Twin Cockpit. The cockpit serves as the
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primary interface between users and the Human
Digital Twin system. It effectively merges anatomical
representation, real-time functional data, and
predictive analytics into a single, unified interface.
Thus, this study successfully demonstrates that the
Human Digital Twin concept can overcome the
limitations of conventional ECG diagnostics, which
are frequently reactive, by providing a proactive
platform for simulation, personalized risk analysis,
and the evaluation of virtual interventions.

The implication of this concept is that it paves the
way for precision medicine in arrhythmia
management, wherein therapeutic strategies can be
optimized for each individual. Although the present
study focuses on developing the conceptual
framework, the recommended subsequent steps are the
implementation of a more functional prototype of the
"HDT cockpit" and the execution of clinical validation
using patient data to assess its effectiveness in real-
world applications.
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