
JIKO (Jurnal Informatika dan Komputer) Accredited KEMDIKTISAINTEK, No.0173/C3/DT.05.00/2025

Vol. 8, No. 3, Desember 2025, pp. 269-274 p-ISSN: 2614-8897

DOI: 10.33387/jiko.v8i3.10783 e-ISSN: 2656-1948

269

AN LSTM-BASED APPROACH FOR INDONESIAN NEWS CATEGORIZATION:

PERFORMANCE ANALYSIS OF HYPERPARAMETER TUNING AND

PREPROCESSING

Iwan La Udin1*, Firman Tempola2, Abdul Mubarak3, Muhammad Sabri Ahmad4, Munazat Salmin5,

Saiful Do Abdullah6

1,2,3,4,5 Program Studi Informatika, Fakultas Teknik, Univeristas Khairun, Ternate, 97719, Indonesia

Email: *1iwanlaudin@gmail.com, 2firman.tempola@unkhair.ac.id ,3amuba@unkhair.ac.id,
4m.sabriahmad@unkhair.ac.id, 5munazatsalmin@unkhair.ac.id, 5saiful.abdullah@unkhair.ac.id

(Received: 30 September 2025, Revised: 10 November 2025, Accepted: 12 December 2025)

Abstract

News disseminated through internet-based systems or news portals is generally classified into specific categories,

such as politics, sports, economy, entertainment, technology, health, and others. Currently, this categorization is

performed manually, requiring a thorough reading of the entire news content. To address this inefficiency, an

automatic classification system for Indonesian news articles is necessary to categorize them based on

predetermined categories. This research employs a Natural Language Processing (NLP) approach and implements

the Long Short-Term Memory (LSTM) architecture. The study was conducted using several testing scenarios,

including (1) hyperparameter tuning of the learning rate to 0.01 and 0.001, (2) the application and omission of

stemming, and (3) various dataset comparison ratios of 60:40, 70:30, 80:20, and 90:10. The evaluation utilized a

dataset of 10,000 articles across 5 categories and was measured using accuracy, precision, recall, and f-measure

metrics. From the three scenarios, seven training models were generated. The second model, with a learning rate

of 0.001, without stemming, and a 90:10 dataset ratio, achieved the highest accuracy of 90.7%, with average

precision, recall, and f-measure scores of 91%. The third and fourth models, which applied stemming, did not

demonstrate a performance improvement, both yielding an accuracy of 89%. The fifth model, with a 60:40 dataset

ratio, produced an accuracy of 90%, while the sixth and seventh models, with 70:30 and 80:20 ratios, resulted in

accuracies of 79% and 88%, respectively.

Keywords: Hyperparameter, Indonesian News Categorization, LSTM, NLP

This is an open access article under the CC BY license.

*Corresponding Author: Iwan La Udin

1. INTRODUCTION

Human access to the latest news has become

increasingly easy and widespread due to current

technological advancements [1]. Technology has

transformed the distribution of news from traditional

media such as newspapers, magazines, radio, and

television to internet-based systems or news portals

[2]. Generally, news distributed through these internet-

based systems or news portals is classified into

specific categories, such as politics, sports, economics,

entertainment, technology, health, and others [3].

The current methodology for news classification

into designated categories is a manual process,

necessitating a comprehensive reading of each article

to ensure accurate categorization. This approach is

notably inefficient, particularly given the large volume

of news articles requiring classification [2]. Moreover,

an additional challenge arises from the deliberate

miscategorization of articles into more popular

categories by certain parties, a practice aimed at

artificially inflating the article's readership [1].

To simplify the news categorization process, this

research aims to develop a system that can

automatically classify news articles into specific

categories. One of the deep learning methods proposed

in this study is the Recurrent Neural Network (RNN),

utilizing the Long Short-Term Memory (LSTM)

architecture. LSTM was developed to address the

exploding and vanishing gradient problems

encountered when training traditional RNNs. Its

ability to handle significant complexity makes LSTM

a suitable machine learning algorithm for document

classification [4].

mailto:4m.sabriahmad@unkhair.ac.id
mailto:5munazatsalmin@unkhair.ac.id
https://creativecommons.org/licenses/by/4.0/

La Udin, et. al, An LSTM-Based Approach for Indonesian … 270

Previous research on news category classification

was conducted by [5] [6], who applied the Support

Vector Machine (SVM) method. Such classification

requires a feature extraction process, which can

become slow and computationally intensive when

dealing with large datasets. In contrast, this study

implements a Recurrent Neural Network (RNN)

model. RNNs have been previously applied in various

text classification tasks, as demonstrated by [7]-[10],

and have shown to achieve excellent model

performance.

2. RESEARCH METHOD

The research stages, which guide the researcher

through the research process, are illustrated in Figure

1.

2.1 Data Collection

The data utilized in this study is sourced from the

Indosum dataset [11], which is available in the kata-ai

repository at https://github.com/kataai/indosum. This

dataset comprises 19,000 news article pairs across six

categories: entertainment, inspiration, showbiz,

headlines, technology, and sports, collected from

online news portals such as CNN Indonesia and

Kumparan. For the purpose of this research, a subset

of 10,000 data points from five of these news article

categories was used. A more detailed breakdown is

presented in Table 1.

2.2 Text Preprocessing

Text preprocessing is a crucial stage for

transforming raw text data into a more structured and

manageable format. There are no rigid rules governing

the exact sequence of preprocessing steps; the specific

stages employed depend on the nature of the data being

processed [1]. The primary text preprocessing stages

include case folding, tokenizing, stopwords removal,

and stemming. An explanation of each stage is

provided below.

 Case Folding: This step involves converting all

alphabetic characters ('a' through 'z') in the text

document to a single case, typically lowercase. Any

characters that are not letters are removed or treated as

delimiters. This ensures uniformity across the text.

 Tokenizing: This is the process of breaking down a

stream of text into individual words or terms, known

as tokens. The text is typically split based on spaces

between words. This stage often includes the removal

of numbers and punctuation marks to isolate the

meaningful words.

 Stopword Removal: This stage focuses on filtering

out common words that provide little semantic value

to the text. These "stopwords" are typically function

words or irrelevant vocabulary that appear frequently

but do not help in differentiating documents, such as

conjunctions ("and," "but"), prepositions ("in," "on"),

and articles ("the," "a").

 Stemming: The goal of stemming is to reduce words

to their root or base form (the "stem"). This is achieved

by removing prefixes and suffixes from each word. For

example, the words "running," "ran," and "runner"

would all be reduced to the stem "run." This helps in

grouping related words and reducing the

dimensionality of the data.

2.3 Long short-term memory

Long Short-Term Memory (LSTM) is a variant of the

Recurrent Neural Network (RNN) that was created to

address the long-term dependency problem found in

traditional RNNs [12]. The architecture of an LSTM

unit is illustrated in Figure 2.

Figure 2. LSTM Architecture

In the workflow of each memory cell within every

LSTM neuron, there are four activation function

processes known as gate units. These gate units consist

of the forget gate, input gate, cell gate, and output gate

[13].

The initial step in the LSTM process is the forget

gate, which determines what information will be

discarded from the cell state. This decision is made by

a sigmoid layer called the "forget gate layer." This

layer processes ht−1 and xt as inputs and produces an

output of either 0 or 1 for the cell state Ct−1 [14]. The

equation for the forget gate is detailed in Equation 1.

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1)

The second step is to decide what information to

store in the cell state. This stage consists of two parts.

The first part is a sigmoid layer, called the input gate

layer, which decides which values will be updated.

Next, a tanh layer creates a vector of new candidate

values, C~t, that could be added to the cell state. In the

subsequent step, the outputs of the input gate layer and

the tanh layer are combined to update the cell state

[11]. The equations for the input gate and the new

candidate values are detailed in Equations 2 and 3.

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2)

𝐶̅ 𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3)

The third step is to update the old cell state, Ct−1,

to the new cell state, Ct. This is accomplished by

multiplying the old cell state by ft to discard the

information that was decided to be forgotten in the

forget gate layer. Then, the result is added to the

product of it and C~t−1, which represents the new

candidate values that will be used to update the cell

state [11]. The cell state equation is as follows:

𝐶̅𝑡 = 𝜎(𝑓𝑡 ∗ 𝐶̅𝑡−1 + 𝑖𝑡 ∗ 𝐶̅ 𝑡−1) (4)

The fourth step in the LSTM method is to

determine the output. This output is based on the

processed cell state. First, a sigmoid layer decides

which parts of the cell state will be included in the

output. Then, the cell state is passed through a tanh

https://github.com/kataai/indosum

La Udin, et. al, An LSTM-Based Approach for Indonesian … 271

layer and multiplied by the output of the sigmoid gate.

This ensures that the final output aligns with the parts

selected by the sigmoid layer [15]. The equations for

the output gate and the hidden state are detailed in

Equations 5 and 6, respectively.

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5)

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶̅𝑡) (6)

3. RESULT AND DISCUSSION

The results of the research are based on a logical

sequence to form a story. The contents show

facts/data. Can use Tables and Numbers but do not

repeat the same data in pictures, tables, and text. To

further clarify the description, can use subtitles.

Discussion is the basic explanation, relationship,

and generalization shown by the results. The

description answers a research question. If there are

any dubious results then show them objectively.

4. 1 Dataset

The dataset used in this study consists of 10,000

data entries. The data is distributed equally across five

categories, with 2,000 entries for each: entertainment,

sports, showbiz, headlines, and technology. This

distribution is illustrated in Figure 2.

Figure 2. dataset details graph

3.2 Dataset Splitting

Before being processed by the LSTM model, the

dataset is first divided into training data (90%) and

testing data (10%). The dataset is randomly partitioned

using the train_test_split function from the scikit-learn

(sklearn) library.

3.3 Training Model

In this stage, three training scenarios will be

developed. The first scenario involves

Hyperparameter Tuning for the model, which includes

adjusting the number of recurrent units, the dropout

rate, the batch size, the learning rate, and the maximum

number of epochs. The hyperparameter scenarios are

detailed in Table 2.

Tabel 2. Skenario Hyperparameter

Model Recurrent
Units

Dropout Lr Batch
Size

Epoch

1 128 0,5 0,01 128 50

2 128 0,5 0,001 128 50

Next, the second scenario investigates the

influence of data preprocessing, specifically

comparing data with and without the application of

stemming, on the hyperparameter scenario outlined in

Table 2.

The third scenario involves experimenting with

different training and testing data split ratios: 60:40,

70:30, and 80:20.

In each scenario, a callback function was

implemented to halt the training process when the

validation error reached its minimum value. In other

words, the callback function stops the training if

overfitting occurs, even if the maximum number of

epochs has not been reached.

Model 1

Model 1 was trained without applying stemming

and with a learning rate of 0.01. The training process

yielded an accuracy of 88.11% with a loss value of

0.34, and a validation accuracy of 89.22% with a

validation loss of 0.42. As shown in Table 2, the

average test values for precision, recall, and F-

Measure were 88%, with a final testing accuracy of

88.4%. Although overfitting did not occur, the

resulting loss value was still high, which prevented the

model from achieving maximum accuracy. The

comparative graph of accuracy and loss can be seen in

Figure 3.

Figure 3. Accuracy and Loss Graph of Model 1

Model 2

Model 2 was trained without the application of

stemming, utilizing a learning rate of 0.001. During the

training process, it achieved an accuracy of 92.26%

with a loss value of 0.29. The validation accuracy

reached 92% with a corresponding validation loss of

0.35.

The average testing values for precision, recall,

and F-Measure, as presented in Table 3, were 91%,

with a final testing accuracy of 90.7%. In other words,

this model yielded the highest accuracy compared to

the seven other models that were trained. Overfitting

did not occur, as indicated by the lower validation loss

value and the consistent increase in accuracy. The

La Udin, et. al, An LSTM-Based Approach for Indonesian … 272

comparative graphs for the accuracy and loss of Model

2 can be observed in Figure 4.
Figure 4. Accuracy and Loss Graph of Model 2

Model 3

In Model 3, training was conducted by applying

stemming and using a learning rate of 0.01. The

training process achieved an accuracy of 93.23% with

a loss value of 0.23, and a validation accuracy of

91.44% with a validation loss of 0.39. The average

testing values for precision, recall, and f-measure, as

shown in Table 4, were 89%, with a final testing

accuracy of 89.3%.

The accuracy graph (Figure 5) indicates that the

model did not experience overfitting, as evidenced by

the consistent trend between the training accuracy and

validation accuracy percentages, as well as the stable

average testing metrics. Furthermore, the resulting loss

value in this model was lower than that of Model 1.

The comparative graph of accuracy and loss can be

seen in Figure 5.

Figure 5. Accuracy and Loss Graph of Model 3

Model 4

In Model 4, training was conducted by applying

stemming with a learning rate of 0.001. The training

process yielded an accuracy of 92.57% with a loss

value of 0.29, and a validation accuracy of 90.67%

with a validation loss of 0.36.

As shown in Table 5, the average testing values

for precision, recall, and f-measure were 89%, with a

final testing accuracy of 89.1%. The progression of

loss and accuracy values from the 1st to the 37th epoch

indicates that the model did not experience overfitting,

as the differences between the training and validation

metrics were not significant. This trend is illustrated in

the graph in Figure 6.

 Figure 6. Accuracy and Loss Graph of Model 3

The evaluation process was conducted on seven

models, utilizing varied configurations for the learning

rate, the application of stemming, and the ratios of

training and testing data. The results for all tested

models are presented in Table 3.

Tabel 3. Perbandingan Kinerja Evaluasi 7 Model Pengujian

Model Units Lr Acc Stemming dataset

1 128 0,01 88% No 90:10

2 128 0,001 91% No 90:10

3 128 0,01 89% Yes 90:10

4 128 0,001 89% Yes 90:10

5 128 0,001 90% No 60:40

6 128 0,001 79% No 70:30

7 128 0,001 88% No 80:20

Based on Table 3, the highest model accuracy was

achieved with a learning rate of 0.001, without the

application of stemming, and using a 90:10 dataset

ratio, resulting in an accuracy of 91%. In contrast,

models that incorporated stemming did not show an

improvement in performance, yielding an accuracy of

only 89% for the two models tested, which is lower

than the models without stemming. This outcome is

likely because the stemming process can alter the

meaning of words within the articles, making it more

difficult for the model to recognize patterns specific to

each category.

Furthermore, the influence of the training data

size on model performance was inconsistent. Model 5,

with a 60:40 dataset ratio, achieved a higher accuracy

than both Model 6 (70:30 ratio) and Model 7 (80:20

ratio). However, the performance of Model 5 was still

lower than that of Model 2, which used a 90:10 dataset

ratio.

3.4 Interface Implementation

The home page consists of two menu options: the

model summary page and the identification page. The

implementation of the home page can be seen in Figure

7.

Figure 7. page home

On this page, the application will provide the user

with information regarding the overall performance of

the model. This includes the training and validation

accuracy graph, the training and validation loss graph,

as well as the percentage values for precision, recall, f-

measure, and the overall accuracy of the model. For a

clearer illustration, please refer to Figure 8.

La Udin, et. al, An LSTM-Based Approach for Indonesian … 273

Figure 8. Page Summary Model

This page serves as the text identification

interface, where users can identify a news article by

directly inputting the text into the provided form. This

is illustrated in Figure 9.

Figure 9. Text Identification Page

The file identification page allows the user to

upload a news article for classification. The system is

designed to exclusively process files with a .txt

extension on this page, as illustrated in Figure 10.

Figure 10. txt File Identification Page.

4. CONCLUSION

Based on the testing and evaluation results, it can

be concluded that the LSTM method with a

hyperparameter tuning of a 0.001 learning rate,

without the application of stemming, and using a 90:10

dataset ratio, successfully classified news articles with

the highest accuracy of 91%. The model with a 0.001

learning rate achieved a higher accuracy compared to

the model with a 0.01 learning rate. Furthermore,

models that applied stemming during the data

preprocessing stage yielded lower accuracy than those

without stemming.

The training and testing dataset ratio that

produced the highest accuracy in this research was

90:10, achieving an accuracy of 91%. This is in

comparison to the 60:40 ratio, which resulted in 90%

accuracy, the 70:30 ratio with 79% accuracy, and the

80:20 ratio with 88% accuracy.

The LSTM method was successfully implemented

for the automatic text classification of Indonesian

language news articles, achieving an accuracy rate of

91%.

5. REFERENCE

[1] Setiawan, A., Santoso, L. W., & Adipranata, R.

(2020). Klasifikasi Artikel Berita Bahasa

Indonesia Dengan Naive Bayes Classifier.

Jurnal Infra, 8(1), 146–151.

[2] Findra Kartika Sari Dewi, T. P. A. (2021).

Klasifikasi Berita Menggunakan Metode

Multinomial Naive Bayes. XVI(2017), 1–8.

[3] Sari, W. K., Rini, D. P., Malik, R. F., & Azhar, I.

S. B. (2020). Klasifikasi Teks Multilabel pada

Artikel Berita Menggunakan Long Short Term

Memory dengan Word2Vec. Resti, 1(10), 276–

[4] Sari, W. K., Rini, D. P., Malik, R. F., & Azhar, I.

S. B. (2020). Klasifikasi Teks Multilabel pada

Artikel Berita Menggunakan Long Short Term

Memory dengan Word2Vec. Resti, 1(10), 276–

285.

[5] Pooja, S and Khanna, V. Multi‑category news

classification using Support Vector Machine

based classifiers. Applied Sciene pp, 1-12. 2020.

https://doi.org/10.1007/s42452-020-2266-6.

[6] Rizal, M. Fikry, and U. Khalil. News Opinion

Classification Application with Support Vector

Machine Algorithm Using Framework

Codeigniter. JITE (Journal of Informatics and

Telecommunication Engineering) Vol 5. No 1. Pp.

160-166. 2021. DOI : 10.31289/jite.v5i1.5189.

[7] H. Hu, M. Liao, C. Zhang and Y. Jing. Text

classification based recurrent neural network.
IEEE 5th Information Technology and

Mechatronics Engineering Conference. Pp 652-

655.

[8] T. Praha, W. Widodo, and M. Nugraheni.

Indonesian Fake News Classification Using

Transfer Learning in CNN and LSTM. JOIV :

International Journal on Informatics

Visualization. Vol 8. No 3. Pp. 1213-1221. 2024.

http://dx.doi.org/10.62527/joiv.8.3.2126

[9] R. Saputra, A. Waworuntu, A. Rusli.

Classification of Indonesian News using LSTM-

RNN Method. 6th International Conference on

New Media Studies (CONMEDIA). 2021. DOI:

10.1109/CONMEDIA53104.2021.9617187

[10] N. Rai, et. all. Fake News Classification using

transformer based enhanced LSTM and BERT.

https://doi.org/10.1007/s42452-020-2266-6
https://dx.doi.org/10.62527/joiv.8.3.2126

La Udin, et. al, An LSTM-Based Approach for Indonesian … 274

International Journal of Cognitive Computing in

Engineering vol. 3. Pp. 98-105. 2022.

https://doi.org/10.1016/j.ijcce.2022.03.003

[11] Kurniawan, K., & Louvan, S.. IndoSum: A New

Benchmark Dataset for Indonesian Text

Summarization. Proceedings of the 2018

[12] Rozi, I. F., Wijayaningrum, V. N., & Khozin, N.

Klasifikasi Teks Laporan Masyarakat Pada Situs

Lapor! Menggunakan Recurrent Neural Network.

Sistemasi, 9(3), 633-638. 2020.

[13] Rais, I. L., & Jondri, J. Klasifikasi Data Kuesioner

dengan Metode Recurrent Neural Network.

EProceedings of Engineering, 7(1), 2817–2826.

2020.

[14] W. Afandi, et al. Klasifikasi Judul Berita

Clickbait menggunakan RNN-LSTM. Jurnal

Informatika: Jurnal Pengembangan IT. Vol 7.

No 1. Pp. 85-89. 2022.

[15] M. R. Jhaerol and S. Sedianto. Implementation Of

Chatbot For Merdeka Belajar Kampus Merdeka

Program Using Long Short-Term Memory.

Jurnal Nasional Pendidikan Teknik Informatika.

Vol 12. No 2. Pp. 253-262. 2023.

https://doi.org/10.23887/janapati.v12i2.58794

