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Abstract 

 

News disseminated through internet-based systems or news portals is generally classified into specific categories, 

such as politics, sports, economy, entertainment, technology, health, and others. Currently, this categorization is 

performed manually, requiring a thorough reading of the entire news content. To address this inefficiency, an 

automatic classification system for Indonesian news articles is necessary to categorize them based on 

predetermined categories. This research employs a Natural Language Processing (NLP) approach and implements 

the Long Short-Term Memory (LSTM) architecture. The study was conducted using several testing scenarios, 

including (1) hyperparameter tuning of the learning rate to 0.01 and 0.001, (2) the application and omission of 

stemming, and (3) various dataset comparison ratios of 60:40, 70:30, 80:20, and 90:10. The evaluation utilized a 

dataset of 10,000 articles across 5 categories and was measured using accuracy, precision, recall, and f-measure 

metrics. From the three scenarios, seven training models were generated. The second model, with a learning rate 

of 0.001, without stemming, and a 90:10 dataset ratio, achieved the highest accuracy of 90.7%, with average 

precision, recall, and f-measure scores of 91%. The third and fourth models, which applied stemming, did not 

demonstrate a performance improvement, both yielding an accuracy of 89%. The fifth model, with a 60:40 dataset 

ratio, produced an accuracy of 90%, while the sixth and seventh models, with 70:30 and 80:20 ratios, resulted in 

accuracies of 79% and 88%, respectively.  
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1. INTRODUCTION 

Human access to the latest news has become 

increasingly easy and widespread due to current 

technological advancements [1]. Technology has 

transformed the distribution of news from traditional 

media such as newspapers, magazines, radio, and 

television to internet-based systems or news portals 

[2]. Generally, news distributed through these internet-

based systems or news portals is classified into 

specific categories, such as politics, sports, economics, 

entertainment, technology, health, and others [3]. 

The current methodology for news classification 

into designated categories is a manual process, 

necessitating a comprehensive reading of each article 

to ensure accurate categorization. This approach is 

notably inefficient, particularly given the large volume 

of news articles requiring classification [2]. Moreover, 

an additional challenge arises from the deliberate 

miscategorization of articles into more popular 

categories by certain parties, a practice aimed at 

artificially inflating the article's readership [1]. 

To simplify the news categorization process, this 

research aims to develop a system that can 

automatically classify news articles into specific 

categories. One of the deep learning methods proposed 

in this study is the Recurrent Neural Network (RNN), 

utilizing the Long Short-Term Memory (LSTM) 

architecture. LSTM was developed to address the 

exploding and vanishing gradient problems 

encountered when training traditional RNNs. Its 

ability to handle significant complexity makes LSTM 

a suitable machine learning algorithm for document 

classification [4]. 
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Previous research on news category classification 

was conducted by [5] [6], who applied the Support 

Vector Machine (SVM) method. Such classification 

requires a feature extraction process, which can 

become slow and computationally intensive when 

dealing with large datasets. In contrast, this study 

implements a Recurrent Neural Network (RNN) 

model. RNNs have been previously applied in various 

text classification tasks, as demonstrated by [7]-[10], 

and have shown to achieve excellent model 

performance. 

2. RESEARCH METHOD 

The research stages, which guide the researcher 

through the research process, are illustrated in Figure 

1. 

 

2.1 Data Collection 

The data utilized in this study is sourced from the 

Indosum dataset [11], which is available in the kata-ai 

repository at https://github.com/kataai/indosum. This 

dataset comprises 19,000 news article pairs across six 

categories: entertainment, inspiration, showbiz, 

headlines, technology, and sports, collected from 

online news portals such as CNN Indonesia and 

Kumparan. For the purpose of this research, a subset 

of 10,000 data points from five of these news article 

categories was used. A more detailed breakdown is 

presented in Table 1. 

 

2.2 Text Preprocessing 

Text preprocessing is a crucial stage for 

transforming raw text data into a more structured and 

manageable format. There are no rigid rules governing 

the exact sequence of preprocessing steps; the specific 

stages employed depend on the nature of the data being 

processed [1]. The primary text preprocessing stages 

include case folding, tokenizing, stopwords removal, 

and stemming. An explanation of each stage is 

provided below. 

    Case Folding: This step involves converting all 

alphabetic characters ('a' through 'z') in the text 

document to a single case, typically lowercase. Any 

characters that are not letters are removed or treated as 

delimiters. This ensures uniformity across the text. 

    Tokenizing: This is the process of breaking down a 

stream of text into individual words or terms, known 

as tokens. The text is typically split based on spaces 

between words. This stage often includes the removal 

of numbers and punctuation marks to isolate the 

meaningful words. 

    Stopword Removal: This stage focuses on filtering 

out common words that provide little semantic value 

to the text. These "stopwords" are typically function 

words or irrelevant vocabulary that appear frequently 

but do not help in differentiating documents, such as 

conjunctions ("and," "but"), prepositions ("in," "on"), 

and articles ("the," "a"). 

    Stemming: The goal of stemming is to reduce words 

to their root or base form (the "stem"). This is achieved 

by removing prefixes and suffixes from each word. For 

example, the words "running," "ran," and "runner" 

would all be reduced to the stem "run." This helps in 

grouping related words and reducing the 

dimensionality of the data. 

2.3 Long short-term memory 

Long Short-Term Memory (LSTM) is a variant of the 

Recurrent Neural Network (RNN) that was created to 

address the long-term dependency problem found in 

traditional RNNs [12]. The architecture of an LSTM 

unit is illustrated in Figure 2. 

 
Figure 2. LSTM Architecture 

 

In the workflow of each memory cell within every 

LSTM neuron, there are four activation function 

processes known as gate units. These gate units consist 

of the forget gate, input gate, cell gate, and output gate 

[13]. 

The initial step in the LSTM process is the forget 

gate, which determines what information will be 

discarded from the cell state. This decision is made by 

a sigmoid layer called the "forget gate layer." This 

layer processes ht−1 and xt as inputs and produces an 

output of either 0 or 1 for the cell state Ct−1 [14]. The 

equation for the forget gate is detailed in Equation 1. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

The second step is to decide what information to 

store in the cell state. This stage consists of two parts. 

The first part is a sigmoid layer, called the input gate 

layer, which decides which values will be updated. 

Next, a tanh layer creates a vector of new candidate 

values, C~t, that could be added to the cell state. In the 

subsequent step, the outputs of the input gate layer and 

the tanh layer are combined to update the cell state 

[11]. The equations for the input gate and the new 

candidate values are detailed in Equations 2 and 3. 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

𝐶̅ 𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3) 

The third step is to update the old cell state, Ct−1, 

to the new cell state, Ct. This is accomplished by 

multiplying the old cell state by ft to discard the 

information that was decided to be forgotten in the 

forget gate layer. Then, the result is added to the 

product of it and C~t−1, which represents the new 

candidate values that will be used to update the cell 

state [11]. The cell state equation is as follows: 

𝐶̅𝑡 = 𝜎(𝑓𝑡 ∗ 𝐶̅𝑡−1 + 𝑖𝑡 ∗ 𝐶̅ 𝑡−1) (4) 

The fourth step in the LSTM method is to 

determine the output. This output is based on the 

processed cell state. First, a sigmoid layer decides 

which parts of the cell state will be included in the 

output. Then, the cell state is passed through a tanh 

https://github.com/kataai/indosum
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layer and multiplied by the output of the sigmoid gate. 

This ensures that the final output aligns with the parts 

selected by the sigmoid layer [15]. The equations for 

the output gate and the hidden state are detailed in 

Equations 5 and 6, respectively. 

 

𝑜𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh( 𝐶̅𝑡) (6) 

 

3. RESULT AND DISCUSSION 

The results of the research are based on a logical 

sequence to form a story. The contents show 

facts/data. Can use Tables and Numbers but do not 

repeat the same data in pictures, tables, and text. To 

further clarify the description, can use subtitles. 

Discussion is the basic explanation, relationship,  

and generalization shown by the results. The 

description answers a research question. If there are 

any dubious results then show them objectively. 

 

4. 1 Dataset 

The dataset used in this study consists of 10,000 

data entries. The data is distributed equally across five 

categories, with 2,000 entries for each: entertainment, 

sports, showbiz, headlines, and technology. This 

distribution is illustrated in Figure 2. 

Figure 2. dataset details graph 
 

3.2 Dataset Splitting 

Before being processed by the LSTM model, the 

dataset is first divided into training data (90%) and 

testing data (10%). The dataset is randomly partitioned 

using the train_test_split function from the scikit-learn 

(sklearn) library. 

 

3.3 Training Model 

In this stage, three training scenarios will be 

developed. The first scenario involves 

Hyperparameter Tuning for the model, which includes 

adjusting the number of recurrent units, the dropout 

rate, the batch size, the learning rate, and the maximum 

number of epochs. The hyperparameter scenarios are 

detailed in Table 2. 
 

Tabel 2. Skenario Hyperparameter 

Model Recurrent 
Units 

Dropout Lr Batch 
Size 

Epoch 

1 128 0,5 0,01 128 50 

2 128 0,5 0,001 128 50 

 

Next, the second scenario investigates the 

influence of data preprocessing, specifically 

comparing data with and without the application of 

stemming, on the hyperparameter scenario outlined in 

Table 2. 

The third scenario involves experimenting with 

different training and testing data split ratios: 60:40, 

70:30, and 80:20. 

In each scenario, a callback function was 

implemented to halt the training process when the 

validation error reached its minimum value. In other 

words, the callback function stops the training if 

overfitting occurs, even if the maximum number of 

epochs has not been reached. 

 

Model 1 

Model 1 was trained without applying stemming 

and with a learning rate of 0.01. The training process 

yielded an accuracy of 88.11% with a loss value of 

0.34, and a validation accuracy of 89.22% with a 

validation loss of 0.42. As shown in Table 2, the 

average test values for precision, recall, and F-

Measure were 88%, with a final testing accuracy of 

88.4%. Although overfitting did not occur, the 

resulting loss value was still high, which prevented the 

model from achieving maximum accuracy. The 

comparative graph of accuracy and loss can be seen in 

Figure 3. 
 

Figure 3. Accuracy and Loss Graph of Model 1 
 

Model 2 

Model 2 was trained without the application of 

stemming, utilizing a learning rate of 0.001. During the 

training process, it achieved an accuracy of 92.26% 

with a loss value of 0.29. The validation accuracy 

reached 92% with a corresponding validation loss of 

0.35. 

The average testing values for precision, recall, 

and F-Measure, as presented in Table 3, were 91%, 

with a final testing accuracy of 90.7%. In other words, 

this model yielded the highest accuracy compared to 

the seven other models that were trained. Overfitting 

did not occur, as indicated by the lower validation loss 

value and the consistent increase in accuracy. The 



La Udin, et. al, An LSTM-Based Approach for Indonesian …   272 

comparative graphs for the accuracy and loss of Model 

2 can be observed in Figure 4. 
Figure 4. Accuracy and Loss Graph of Model 2 

 

Model 3 

In Model 3, training was conducted by applying 

stemming and using a learning rate of 0.01. The 

training process achieved an accuracy of 93.23% with 

a loss value of 0.23, and a validation accuracy of 

91.44% with a validation loss of 0.39. The average 

testing values for precision, recall, and f-measure, as 

shown in Table 4, were 89%, with a final testing 

accuracy of 89.3%. 

The accuracy graph (Figure 5) indicates that the 

model did not experience overfitting, as evidenced by 

the consistent trend between the training accuracy and 

validation accuracy percentages, as well as the stable 

average testing metrics. Furthermore, the resulting loss 

value in this model was lower than that of Model 1. 

The comparative graph of accuracy and loss can be 

seen in Figure 5. 

 
Figure 5. Accuracy and Loss Graph of Model 3 

 

Model 4 

In Model 4, training was conducted by applying 

stemming with a learning rate of 0.001. The training 

process yielded an accuracy of 92.57% with a loss 

value of 0.29, and a validation accuracy of 90.67% 

with a validation loss of 0.36. 

As shown in Table 5, the average testing values 

for precision, recall, and f-measure were 89%, with a 

final testing accuracy of 89.1%. The progression of 

loss and accuracy values from the 1st to the 37th epoch 

indicates that the model did not experience overfitting, 

as the differences between the training and validation 

metrics were not significant. This trend is illustrated in 

the graph in Figure 6. 

 Figure 6. Accuracy and Loss Graph of Model 3 
 

The evaluation process was conducted on seven 

models, utilizing varied configurations for the learning 

rate, the application of stemming, and the ratios of 

training and testing data. The results for all tested 

models are presented in Table 3. 

 
Tabel 3. Perbandingan Kinerja Evaluasi 7 Model Pengujian 

Model Units Lr Acc Stemming dataset 

1 128 0,01 88% No 90:10 

2 128 0,001 91% No 90:10 

3 128 0,01 89% Yes 90:10 

4 128 0,001 89% Yes 90:10 

5 128 0,001 90% No 60:40 

6 128 0,001 79% No 70:30 

7 128 0,001 88% No 80:20 

Based on Table 3, the highest model accuracy was 

achieved with a learning rate of 0.001, without the 

application of stemming, and using a 90:10 dataset 

ratio, resulting in an accuracy of 91%. In contrast, 

models that incorporated stemming did not show an 

improvement in performance, yielding an accuracy of 

only 89% for the two models tested, which is lower 

than the models without stemming. This outcome is 

likely because the stemming process can alter the 

meaning of words within the articles, making it more 

difficult for the model to recognize patterns specific to 

each category. 

Furthermore, the influence of the training data 

size on model performance was inconsistent. Model 5, 

with a 60:40 dataset ratio, achieved a higher accuracy 

than both Model 6 (70:30 ratio) and Model 7 (80:20 

ratio). However, the performance of Model 5 was still 

lower than that of Model 2, which used a 90:10 dataset 

ratio. 

3.4 Interface Implementation 

 

The home page consists of two menu options: the 

model summary page and the identification page. The 

implementation of the home page can be seen in Figure 

7. 

 

Figure 7. page home 
 

On this page, the application will provide the user 

with information regarding the overall performance of 

the model. This includes the training and validation 

accuracy graph, the training and validation loss graph, 

as well as the percentage values for precision, recall, f-

measure, and the overall accuracy of the model. For a 

clearer illustration, please refer to Figure 8. 
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Figure 8. Page Summary Model 

 

This page serves as the text identification 

interface, where users can identify a news article by 

directly inputting the text into the provided form. This 

is illustrated in Figure 9. 

Figure 9. Text Identification Page 

 

The file identification page allows the user to 

upload a news article for classification. The system is 

designed to exclusively process files with a .txt 

extension on this page, as illustrated in Figure 10. 

Figure 10. txt File Identification Page. 
 

4. CONCLUSION 

Based on the testing and evaluation results, it can 

be concluded that the LSTM method with a 

hyperparameter tuning of a 0.001 learning rate, 

without the application of stemming, and using a 90:10 

dataset ratio, successfully classified news articles with 

the highest accuracy of 91%. The model with a 0.001 

learning rate achieved a higher accuracy compared to 

the model with a 0.01 learning rate. Furthermore, 

models that applied stemming during the data 

preprocessing stage yielded lower accuracy than those 

without stemming. 

The training and testing dataset ratio that 

produced the highest accuracy in this research was 

90:10, achieving an accuracy of 91%. This is in 

comparison to the 60:40 ratio, which resulted in 90% 

accuracy, the 70:30 ratio with 79% accuracy, and the 

80:20 ratio with 88% accuracy. 

The LSTM method was successfully implemented 

for the automatic text classification of Indonesian 

language news articles, achieving an accuracy rate of 

91%. 
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