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Abstract 

 

Emotion classification from speech has become an important technology in the modern artificial intelligence era. 

However, research for the Indonesian language is still limited, with existing methods predominantly relying on 

conventional machine learning approaches that achieve a maximum accuracy of only 90%. These traditional 

methods face challenges in capturing complex temporal dependencies and bidirectional contextual patterns 

inherent in emotional speech, particularly for Indonesian prosodic characteristics. To address this limitation, this 

study uses a combination of Mel-Frequency Cepstral Coefficients (MFCC) feature extraction and Bidirectional 

Long Short-Term Memory (BiLSTM) model with audio augmentation techniques for Indonesian speech emotion 

classification. The IndoWaveSentiment dataset contains 300 audio recordings from 10 respondents with five 

emotion classes: neutral, happy, surprised, disgusted, and disappointed. Audio augmentation techniques with a 2:1 

ratio using five methods generated 900 samples. MFCC feature extraction produced 40 coefficients that were 

processed using BiLSTM architecture with two bidirectional layers (256 and 128 units). The model was trained 

using Adam optimizer with early stopping. Research results show the highest accuracy of 93.33% with precision 

of 93.7%, recall of 93.3%, and F1-score of 93.3%. The "surprised" emotion achieved perfect performance (100%), 

while "happy" had the lowest accuracy (88.89%). This result surpasses previous benchmarks on the same dataset, 

which utilized Random Forest (90%) and Gradient Boosting (85%). This study demonstrates the effectiveness of 

combining MFCC, BiLSTM, and audio augmentation in capturing Indonesian speech emotion characteristics for 

the development of voice-based emotion recognition systems. 
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1. INTRODUCTION 

In the era of rapid artificial intelligence (AI) 

advancement, Speech Emotion Recognition (SER) has 

emerged as a critical technology enabling computers 

to interpret and respond to human emotions through 

vocal characteristic analysis [1]. The widespread 

adoption of AI-powered voice assistants such as Siri, 

Alexa, and Google Assistant demonstrates the 

increasing capability of intelligent systems to 

understand the contextual nuances of human 

communication [2]. Indonesia’s position as the fourth 

most AI enthusiastic country globally presents a 

significant opportunity for developing SER 

technology tailored to Indonesian vocal characteristics 

[3]. However, the development of emotion recognition 

systems specifically designed for the Indonesian 

language remains limited [4], underscoring the urgent 

need for research that considers linguistic and cultural 

factors influenced by unique prosodic characteristics 

[5]. 

Recent studies have demonstrated progress in 

Indonesian speech emotion recognition. Bustamin et 

al. (2024) introduced the IndoWaveSentiment dataset 

containing 300 Indonesian emotional audio recordings 

across five classes: neutral, happy, surprised, 

disgusted, and disappointed, which were validated 

through manual annotations and questionnaires [6]. 

Building upon this dataset, Majiid et al. (2025) 

conducted comparative studies using conventional 

machine learning methods, with Random Forest 

achieving 90% accuracy through the combination of 

spectral contrast and MFCC features [7]. Prawangsa 

and Karyawati (2024) applied MFCC and LSTM 

https://creativecommons.org/licenses/by/4.0/
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techniques on the TESS dataset, achieving a validation 

accuracy of 72.32% [8]. In related deep learning 

applications for Indonesian language processing, 

Mariyanto and Pardede (2023) demonstrated the 

effectiveness of LSTM networks in sentiment analysis 

tasks, achieving 77.96% accuracy on Indonesian text 

data, highlighting the potential of LSTM architectures 

for capturing sequential patterns in Indonesian 

language contexts [9]. In related acoustic classification 

domains, Zhang et al. (2023) achieved 93.81% 

accuracy for urban forest sound classification using 

deep learning [10], Dias et al. (2025) obtained up to 

91% accuracy by integrating spectrograms and 

acoustic indices for bird and frog sound classification 

[11], and Kumar et al. (2024) demonstrated that audio 

augmentation significantly enhanced model 

robustness and accuracy in bird sound classification 

[12]. Similar advancements in music classification 

[13] emphasize the potential of combining spectral 

features, augmentation, and deep architectures for 

improved performance. 

Despite these advancements, existing state-of-the-

art methods for Indonesian speech emotion 

recognition predominantly rely on conventional 

machine learning approaches, with the highest 

reported accuracy reaching 90% using Random Forest 

[7]. These methods are limited in capturing complex 

temporal dependencies and bidirectional contextual 

patterns inherent in emotional speech. Moreover, 

existing research has not yet optimized deep learning 

architectures that reflect the prosodic and phonological 

characteristics unique to the Indonesian language 

particularly variations in intonation, duration, and 

fundamental frequency influenced by diverse 

linguistic and cultural backgrounds [5]. The absence 

of studies integrating bidirectional temporal 

processing and Indonesian specific audio 

augmentation strategies represents a substantial gap 

constraining the development of robust SER systems 

for Indonesian contexts. 

To address this gap, this research proposes a novel 

combination of MFCC feature extraction and BiLSTM 

architecture enhanced with Indonesian-adapted audio 

augmentation for speech emotion classification. The 

novelty of this study is threefold: (1) optimization of 

MFCC parameters calibrated to the 

IndoWaveSentiment dataset characteristics; (2) 

implementation of five audio augmentation techniques 

designed to capture Indonesian prosodic variability; 

and (3) application of BiLSTM architecture to learn 

bidirectional temporal dependencies in Indonesian 

emotional speech signals. MFCC was chosen for its 

proven capability in extracting spectral features 

through mel-scale transformation that reflects human 

auditory perception [13], audio augmentation 

techniques were incorporated to enhance model 

robustness against vocal variations [12], and the 

BiLSTM architecture was employed for its superior 

ability to learn temporal patterns from both forward 

and backward directions [14]. The primary objective 

of this research is to develop an accurate and robust 

Indonesian speech emotion classification model that 

surpasses existing performance benchmarks while 

maintaining strong generalization across diverse 

speakers and emotional intensities. 

2. RESEARCH METHOD 

The research methodology is depicted in Figure 1, 

which provides guidelines on the flow of research 

stages. It consists of data collection, preprocessing, 

augmentation, feature extraction, modeling and 

evaluation. 

 

 
Figure 1. Research Stages 

 
The research was conducted using a deep 

learning model, namely BiLSTM, for the purpose of 

classifying the emotions of Indonesian voices. The 

following is a series of research. 

 

2.1 Data Collection 

The dataset used in this study was obtained from 

IndoWaveSentiment, an Indonesian-language emotion 

audio dataset developed by Bustamin et al. (2024) in 

their previous research. (2024) [6]. This dataset 

contains voice recordings from 10 respondents (5 male 

and 5 female) who are radio announcers, singers, and 

professional voice actors. Each respondent uttered the 

sentence “The quality of this phone is pretty good” 

with five emotion variations, namely neutral, happy, 

surprised, disgusted, and disappointed. 

Each emotion was recorded with two levels of 

intensity and repeated three times. Thus, each 

respondent produced 30 audio recordings, and a total 

of 300 audio files in .wav format were collected. These 

audio files are labeled according to a naming rule 
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consisting of actor identity, emotion class, intensity 

level, and repetition order. The dataset can be seen in 

table 1. 

 
Table  1. Voice Emotion Dataset 

Emotion Intensity Total 

Audio  

Male                     

Total 

Audio  

Female                    

Total 

Neutral Normal 15 15 30 

Neutral Strong 15 15 30 

Happy Normal 15 15 30 

Happy Strong 15 15 30 

Surprised Normal 15 15 30 

Surprised Strong 15 15 30 

Disgusted Normal 15 15 30 

Disgusted Strong 15 15 30 

Disappointed Normal 15 15 30 

Disappointed Strong 15 15 30 

 Grand Total 150 150 300 

 

2.2 Data Preprocessing 

The preprocessing stage prepares the raw audio 

data into a format suitable for further processing by 

performing several sequential steps. The collected 

IndoWaveSentiment Indonesian emotion audio dataset 

in WAV format was loaded at a sample rate of 16 KHz. 

The preprocessing process includes audio 

normalization to ensure amplitudes fall within the 

range [-1, 1], followed by the removal of silent 

segments or noise with the parameter top_db=20. The 

dataset consists of 300 original audio files with a 

balanced distribution. 

 

2.3 Augmentation 

Standard data augmentation techniques were 

applied to increase dataset diversity and reduce 

overfitting, using an augmentation ratio of 2:1, 

resulting in a total of 900 samples from the original 

300 samples. Five augmentation techniques were 

randomly implemented on each audio sample as 

follows: 

1. Add Noise 

The addition of random Gaussian noise with a 

noise factor of 0.005 to simulate varying 

environmental conditions. This technique follows 

an approach that has proven effective in previous 

research to improve the robustness of the model 

[14]. 

2. Time Stretch 

Modifies the audio duration without affecting 

pitch, using a factor ranging from 0.8 to 1.2, to 

handle temporal variations in emotional 

expressions. 

3. Pitch Shift  

Shifts the voice pitch by -3 to +3 semitones without 

changing the duration, to simulate individual 

differences. 

4. Time Shift 

Circular temporal shift with a maximum of 20% of 

the audio length. 

5. Speed Change 

Changing the speed through resampling by a factor 

of 0.9-1.1, which allows the model to recognize 

emotions at various speech speeds. 

Each augmentation result is renormalized to 

maintain data consistency. This approach is inspired 

by audio augmentation strategies that have been shown 

to improve model robustness in speech classification. 

Previous research has shown that various 

augmentation techniques can improve accuracy up to 

89.33% on the RAVDESS dataset [15]. In addition, the 

augmentation process can increase the dataset size to 

almost three times that of the original dataset [14], 

which contributes significantly to the improvement of 

the model performance. 

 

2.4 Feature Extraction 

Feature extraction using Mel-Frequency Cepstral 

Coefficients (MFCC) plays a crucial role in Indonesian 

speech emotion recognition, enabling the system to 

identify unique characteristics of emotional 

expressions. The MFCC algorithm transforms the 

representation of audio signals from the time domain 

to the frequency domain, mimicking human auditory 

perception to capture the essential elements of 

emotional sounds, in accordance with the approach 

used in speech analysis. 

 

 
Figure 2. Mel-Frequency Cepstral Coefficient Process 

 
1. Pre-emphasis is applied to audio data to increase 

the amplitude of high frequencies, reduce noise, 

and enhance the spectral shape of the signal. This 

process results in a spectrum with higher values at 

low frequencies that decrease gradually above 

2000 Hz, in accordance with sound signal 

processing techniques. 

2. Frame Blocking: The audio signal is divided into 

short frames (20-40 ms) with an overlap of about 

50%, transforming the dynamic signal into a 

relatively stable sequence for frequency analysis 

using the Fourier transform. This process is applied 

to the entire duration of the original recording to 

ensure temporal consistency. 

3. Windowing: Each frame is processed using a 

windowing function, such as a Hamming window, 

to minimize the tran sien effect at the edges of the 

signal, resulting in a smoother signal for spectral 

analysis. 
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4. Fast Fourier Transform (FFT) : The FFT converts 

a signal from the time domain to the frequency 

domain to generate a power spectrum [12]. This 

process enables the analysis of the frequency 

components of each emotion audio frame. 

5. Mel-Frequency Wrapping : The power spectrum of 

each frame is filtered using a Mel-scale filter bank 

with 20-40 triangular filters. These filters mimic 

human auditory perception which is linear below 1 

kHz and logarithmic above, resulting in filter 

energies that represent sound characteristics [13]. 

6. Logarithms (Log) are applied to the Mel filter 

energy to compress the dynamic range, resulting in 

a log Mel-spectrum that aligns with the perceived 

intensity of the human voice. 

7. Discrete Cosine Transform (DCT) converts the log 

Mel-spectrum to the cepstral domain, resulting in 

40 MFCC coefficients that provide a 

comprehensive feature representation for voice 

emotion analysis. 

The implementation is automated using an audio 

processing library, extracting 40 MFCC coefficients. 

The extracted results are temporally averaged to 

produce a 40-dimensional feature vector based on the 

original duration of the recording. 

2.5 Modeling  

Bidirectional Long Short Term Memory 

(BiLSTM) is a variant of LSTM that processes 

sequences of data forward and backward to capture 

temporal context from both directions. BiLSTM is a 

development of Long Short Term Memory (LSTM) by 

connecting two hidden input layers in BiLSTM, 

namely forward inputs used to represent previous 

information and backward inputs used to represent 

later information [16]. This model is very suitable for 

analyzing the emotions of Indonesian voices based on 

MFCC features extracted with additional 

augmentation. 

 

 
Figure 3. Architecture of BiLSTM Model 

 
Figure 3 depicts the implemented BiLSTM 

architecture, consisting of two bidirectional LSTM 

layers followed by dropout and batch normalization, 

respectively. The hidden layer uses ReLU activation, 

while the output layer utilizes softmax activation for 

multi-class classification. 

The selection of BiLSTM is based on its 

ability to handle complex patterns in emotion audio 

signals, where key information may be scattered 

across different parts of the recording. The 

bidirectional approach allows the model to learn the 

context from both directions simultaneously, 

improving the detectability of emotional features that 

may be missed with unidirectional models. 

 
Table  2. Details Of BiLSTM Model 

Layer Type Output Shape Parameters 

Bidirectional LSTM (None, 40, 256) 133,120 

Batch Normalization (None, 40, 256) 1,024 

Bidirectional LSTM (None, 128) 164,352 

Batch Normalization (None, 128) 512 

Dense (ReLU) (None, 128) 16,512 

Dropout (default) (None, 128) 0 

Batch Normalization (None, 128) 512 

Dense (ReLU) (None, 64) 8,256 

Dropout (default) (None, 64) 0 

Batch Normalization (None, 64) 256 

Dense (Softmax) (None, 5) 325 

 
Trainable 

parameters 

323717 

 
Non-trainable 

parameters 

1152 

 Total Parameters 324869 

 

Based on Table 2, a two-layer BiLSTM 

configuration with 256 and 128 units was chosen as it 

resulted in a total of 324,869 parameters that were 

optimal for the Indonesian voice emotion dataset. The 

use of default dropout maintains the balance between 

regularization and learning, while batch normalization 

after each layer ensures training stability with only 

1,152 non-trainable parameters. 

The dense layer with ReLU activation provides the 

necessary non-linearity for complex emotion 

classification (with 16,512 and 8,256 parameters), and 

the softmax output layer with 325 parameters is 

suitable for classifying five emotion classes. This 

approach is consistent with the utilization of BiLSTM 

to capture bidirectional context relationships in voice 

data. 

 
Table  3. Hyperparameter Tuning BiLSTM 

Parameter Value 

Batch size 32 

Epochs 150 

Loss Function Sparse Categorical Crossentropy 

Optimizer Adam 

Learning Rate 0.001 (adapted with ReduceLROnPlateau, 

min=0.0001, factor=0.5) 

Early Stopping Monitor=’val_loss’, patience=20, 

restore_best_weights=True 

Model 

Checkpoint 

Monitor=’val_loss’, save_best_only=True 

Input shape (40,1) – From X_train.shape 

BiLSTM layers 2 Bidirectional LSTM layers (256 , 128 

units) 

Dense Layers 2 Dense layers (128, 64 units) + output layer 

(5 classes) 

Activation 

Funtions 

ReLU (hidden), Softmax (output) 

Dropout rate Default 

Batch 

normalization 

Applied after each layer 
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Based on Table 3, a batch size of 32 was chosen to 

balance computational efficiency and training 

stability. An initial learning rate of 0.001 with Adam 

optimizer was chosen as it provides stable 

convergence for sequential data. Early stopping with 

patience was applied as it prevents overfitting while 

allowing enough time for optimal convergence. The 

sparse categorical crossentropy loss function was 

chosen as it is compatible with integer labels for the 

five emotion classes, while dropout and batch 

normalization effectively cope with high variation in 

the audio data. An epoch setting of up to 150 was 

balanced with early stopping to avoid overfitting. 

2.6 Confusion Matrix 

To assess the effectiveness of the Indonesian 

voice emotion classification method using MFCC and 

BiLSTM, the classification results are analyzed to 

measure the success rate. Confusion matrix is the main 

evaluation tool in measuring model performance in 

multi-class classification, especially in voice emotion 

recognition that has significant acoustic variations. 

Confusion Matrix provides more specific information 

on how different genres can be identified using 

classification techniques [17]. The analysis involves 

calculating metrics such as accuracy, precision, recall, 

and F1-score obtained from the components of the 

matrix. 

In voice emotion recognition research, every 

machine learning problem requires a customized set of 

metrics to accurately evaluate its performance [18]. 

The Confusion Matrix presents the relationship 

between model predictions and actual labels in a 

tabular format, with the vertical axis showing the 

original emotion categories and the horizontal axis 

showing the predicted categories from the BiLSTM 

model. Each cell in the matrix reflects the number of 

samples of a particular emotion classified to a 

particular prediction class. 

1. Accuracy describes the overall ability of the model 

to correctly predict voice emotions from the total 

audio samples tested. Formula : 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 . 100          (1) 

 
2. Precision indicates the level of accuracy of the 

voice emotion prediction generated by the 

BiLSTM model compared to the targeted emotion. 

Formula : 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (2) 

 
3. Recall measures the model's ability to detect all 

audio samples that truly represent a particular 

emotion. Formula : 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (3) 

 

4. F1-Score combines precision and recall to provide 

an optimal balance in evaluating the performance 

of voice emotion classification. Formula : 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2.
𝑅𝑒𝑐𝑎𝑙𝑙.𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
           (4) 

 
TP represents correctly predicted positive samples, 

TN represents correctly predicted negative samples, 

FP represents incorrectly predicted positive samples,  

and FN represents incorrectly predicted negative 

samples. 

3. RESULT AND DISCUSSION 

3.1 Data Collection 

This research utilizes a public dataset obtained 

from IndoWaveSentiment, an Indonesian-language 

emotion audio dataset developed by previous research 

Bustamin et al. (2024) [6] which can be seen in table 

1, with audio data obtained from the Mendeley Data 

platform under the title IndoWaveSentiment. Each 

emotion has unique vocal characteristics, so the 

selection of this dataset aims to test the model's ability 

to distinguish various voice emotions. 

 

3.2 Preprocessing 

This stage begins with loading audio files at a 

sampling frequency of 16 kHz to ensure processing 

consistency. Amplitude normalization was applied to 

the range [-1, 1] to standardize the volume, followed 

by removal of silent parts using the parameter 

top_db=20 to reduce background noise while 

preserving important vocal characteristics. 

 

3.3 Data Augmentation 

Five standard augmentation techniques were 

randomly implemented in a 2:1 ratio to increase the 

variability of the dataset from 300 to 900 samples. The 

applied techniques include Gaussian noise addition 

(factor of 0.005), time stretching with a factor of 0.8-

1.2, pitch shifting ±3 semitones, circular time shift of 

maximum 20%, and speed change with a factor of 0.9-

1.1. Each augmentation result is renormalized to 

maintain data consistency. 

 

3.4 Feature Extraction 

Feature extraction uses 40 MFCC coefficients 

implemented through mel-scale transform to capture 

the spectral characteristics of voice emotions. The 

process starts with pre-emphasis for spectral 

enhancement, frame blocking with a duration of 20-40 

ms, windowing using Hamming function, FFT 

transformation to frequency domain, filtering with 

Mel-scale filter bank, logarithm application, and 

finally DCT to generate MFCC coefficients. The 

extraction results are temporally averaged resulting in 

a 40-dimensional feature vector. 
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Table  4. MFCC Feature Statistics Between Emotion Classes 

Class Min Max                     Mean ± SD                 CV(%) 

Neutral -183.8 87.4 -48.2 ± 45.3 94.0 

Happy -174.2 77.3 -48.4 ± 42.2 87.2 

Surprised -166.4 70.8 -47.8 ± 39.7 83.1 

Disgusted -218.2 76.4 -70.9 ± 48.7 68.7 

Disappointed -222.3 81.3 -70.5 ± 51.2 72.6 

 

Table 4 reveals the distinct distribution patterns 

among emotion categories based on the distribution of 

MFCC coefficients (n=40) obtained from 900 emotion 

audio samples with balanced dataset (180 samples per 

class), where mean denotes the average value and CV 

is the coefficient of variation in percent. The most 

prominent pattern is the difference in mean values 

between emotion groups, where negative emotions 

(Disgust: -70.9, Disappointed: -70.5) have a much 

lower mean than other emotions (Neutral: -48.2, 

Happy: -48.4, Surprised: -47.8). In terms of variability, 

there are two interesting patterns: negative emotions 

tend to be more consistent (CV: Disgust 68.7%, 

Disappointed 72.6%) while positive and neutral 

emotions are more variable (CV: Neutral 94.0%, 

Happy 87.2%, Surprised 83.1%). The range of values 

also supports this finding where negative emotions 

show more extreme minimum values (up to -222.3) but 

with higher consistency. This finding suggests that 

negative emotions have more specific and consistent 

acoustic characteristics than positive and neutral 

emotions which show greater diversity of expression 

between individuals. This pattern indicates that MFCC 

features are able to distinguish well between emotions 

and thus provide an optimal contribution to BiLSTM-

based emotion classification. 

 

3.5 Model Training 

Training was performed using the Adam 

optimizer with an initial learning rate of 0.001, batch 

size of 32, and a maximum of 150 epochs. An early 

stopping strategy with patience 20 was applied to 

prevent overfitting, while ReduceLROnPlateau 

decreased the learning rate when validation loss 

stagnated. The data was divided with a ratio of 80:20 

using stratified split to maintain a balanced class 

distribution. 

 
Table  5. BiLSTM Training Result 

Epoch Validation 

Accuracy 

Validation 

Loss                     

Train 

Accuracy                

Train 

Loss 

1 30.6% 3.505 29.7% 3.799 

25 67.2% 1.455 54.9% 1.721 

50 76.7% 0.802 70.1% 0.941 

100 91.7% 0.413 86.4% 0.484 

132 93.3% 0.346 90.7% 0.347 

150 91.7% 0.367 92.8% 0.275 

 

Table 5 shows the training progress of the 

BiLSTM model which reached optimal convergence at 

the 132nd epoch with the highest validation accuracy 

of 93.3% and the lowest validation loss of 0.346. The 

comparison between training and validation metrics 

shows a healthy learning pattern, where the gap 

between training accuracy (90.7%) and validation 

accuracy (93.3%) at the best epoch is only 2.6%, 

indicating no significant overfitting. The consistent 

loss reduction from 3.505 at the first epoch to 0.346 at 

the 132nd epoch demonstrates the effectiveness of the 

applied optimization strategy, while the slight 

degradation at epoch 150 (validation accuracy drops to 

91.7%) confirms the importance of implementing 

early stopping to prevent model performance 

degradation. 

 

 
Figure 4. BiLSTM Training Accuracy Chart 

 

 
Figure 5. BiLSTM Training Loss Chart 

 
Based on Figure 4 and Figure 5, it can be seen that 

the training accuracy and validation accuracy curves 

increase consistently from around 30% to over 90%, 

although there are occasional fluctuations in the 

validation accuracy which is above or below the 

training accuracy. However, the two curves still move 

in tandem without showing a significant widening 

distance, so there is no indication of serious 

overfitting. On the loss graph, both training loss and 

validation loss decrease steadily from an initial value 

of around 3.5 to reach 0.3-0.4 at the end of training, 

with the pattern converging to almost the same value. 

This shows that the learning process is stable and the 

implementation of data augmentation helps maintain a 

balance between training and validation performance. 

 
Table 6. BiLSTM Classification Result 

Class Precision Recall                     F1-

Score                

Support 

Disappointed 94.4% 94.4% 94.4% 36 

Disgusted 89.2% 91.7% 90.4% 36 

Happy 100% 88.9% 94.1% 36 

Neutral 97.1% 91.7% 94.3% 36 

Surprised 87.8% 100% 93.5% 36 

Average 93.7% 93.3% 93.3% 180 
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Based on the evaluation results shown in Table 6, 

the emotion classification model performed very well 

with the highest precision in the Happy class (100%) 

and the lowest in the Surprised class (87.8%). For 

recall, the highest value was achieved in the Surprised 

class (100%) which means all the surprised samples 

were correctly detected, while the emotion “happy” 

had the lowest recall (88.9%) despite its perfect 

precision. Overall, the model achieved an average 

precision of 93.7%, recall of 93.3%, and F1-Score of 

93.3% with a total accuracy of 93.3%, indicating that 

the model is effective in classifying different 

categories of emotions with consistent and balanced 

performance across all classes. 

 

3.6 Confusion Matrix 

The confusion matrix serves as an evaluation 

instrument that displays the distribution of model 

predictions against actual labels in matrix form. This 

visualization allows for an in-depth analysis of the 

model's ability to classify each emotion category, 

while also identifying patterns of error that occur 

during the prediction process. 

 

 
Figure 6. Confusion Matrix Result 

 
The confusion matrix in Figure 6 demonstrates the 

impressive performance of the BiLSTM model with an 

overall accuracy of 93.33%. The balanced sample 

distribution with 36 samples each per class resulted in 

highly accurate predictions. The ‘surprised’ class 

achieved perfect performance with 100% accuracy 

(36/36 correct predictions), followed by 

‘disappointed’ with 94.44% accuracy (34/36), 

‘disgusted’ and ‘neutral’ each achieved 91.67% 

(33/36), while ‘happy’ obtained the lowest accuracy of 

88.89% (32/36). The consistency of performance 

between classes shows that the model has successfully 

learned distinctive feature representations for each 

emotion category. 

Although misclassification errors are minimal, 

with only 12 cases out of 180 samples, the error 

patterns still provide valuable insights. Each class 

experienced a maximum of 3 mispredictions, with an 

even distribution across categories. This low error rate 

indicates that the model has effectively extracted the 

acoustic features that distinguish each emotion. The 

minimal and evenly distributed error pattern indicates 

the robustness of the model in handling variability in 

voice emotion data. 

 
Table  7. Comparison Of Model Performance 

Researchers Method Object                     Accuracy              

Penelitian 

Bustamin et 

al.,2024 [6] 

IndoWaveS

entiment 

Dataset 

(Baseline) 

Indonesian 

Emotion 

Audio 

- 

Penelitian 

Majiid et al., 

2025 [7] 

Random 

Forest & 45 

Features 

Indonesian 

Emotion 

Audio 

90% 

Penelitian 

Majiid et al., 

2025 [7] 

Gradient 

Boosting & 

45 Features 

Indonesian 

Emotion 

Audio 

85% 

Penelitian 

Majiid et al., 

2025 [7] 

Logistic 

Regression 

& 45 

Features 

Indonesian 

Emotion 

Audio 

75% 

Current 

Research 

MFCC & 

BiLSTM 

Indonesian 

Emotion 

Audio 

93% 

 

As shown in Table 7, the results demonstrate 

significant improvement over previous methods. The 

advantage of BiLSTM lies in its ability to capture bi-

directional temporal dependencies in audio signals, 

providing a more comprehensive understanding of 

context than traditional methods such as Random 

Forest or Gradient Boosting. 

 

 
Figure 7. Model Prediction Test Results 

 
The prediction test results in Figure 7 demonstrate 

the BiLSTM model's ability to classify voice emotions 

with a very high confidence score. The model 

successfully predicted the emotion “Neutral” in the 

first sample with 99.74% confidence and the emotion 

“Happy” in the second sample with 98.17% 

confidence, both in accordance with the actual label. 

The probability distribution shows the dominance of 
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the predicted class with a very low probability of other 

classes, indicating the ability of the model to 

distinguish the MFCC feature characteristics 

distinctively. The high confidence score (>98%) in 

both samples reflects the effectiveness of the BiLSTM 

architecture in capturing the temporal patterns of 

Indonesian audio emotion signals. 

4. CONCLUSION 

This research successfully implemented an 

Indonesian speech emotion classification system using 

a combination of MFCC and BiLSTM with an 

accuracy of 93.33%. The audio augmentation 

technique proved effective in improving the 

robustness of the model through dataset 

diversification. The BiLSTM architecture shows 

superiority in capturing bidirectional temporal 

dependencies over conventional methods. The 

emotion “Surprised” shows the most distinctive 

characteristics with perfect accuracy. These results 

make a significant contribution to the development of 

speech-based emotion recognition systems for the 

Indonesian language and can be applied to various 

fields such as automated customer service, audio 

sentiment analysis, and speech-based interactive 

systems. 
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