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Abstract

Global climate change has led to an increase in the frequency and intensity of extreme events at sea, including in
the Semarang-Demak coastal area. This region is highly vulnerable to the dynamics of Significant Wave Height
(SWH), sea level rise, and coastal land subsidence. As a result, in addition to disrupting maritime navigation,
frequent occurrences of tidal flooding (rob) have caused significant disturbances to economic activities and
settlements in the coastal area. This study aims to develop a clustering model for SWH in the Semarang-Demak
waters using the K-Means algorithm. The data used includes oceanographic and meteorological parameters from
the Tanjung Emas Semarang Maritime Meteorological Station (BMKG) for the period 2019-2024. The
clustering results show that K-Means successfully formed three clusters of sea waves representing calm,
moderate, and high waves. Model evaluation using the Silhouette Score with a value of 0.725 and the Davies-
Bouldin Index (DBI) of 0.425 indicates good performance, with K=3 as the optimal cluster. Temporal analysis
reveals a clear seasonal pattern, where high energy conditions dominate during the west season (December-
February), while calm conditions are prevalent during the east season (June-August). These findings provide a
foundation for early warning systems and disaster risk management in this region, with further clustering tests
using other algorithms and the need for improved data quality.
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phenomenon has become increasingly frequent in

1. INTRODUCTION tropical regions such as Indonesia, which has

Global climate change has increased the complex oceanographic dynamics[4]. This condition
frequency and intensity of extreme events at sea, such demands the presence of an accurate and adaptive
as rising wave heights, tidal flooding (rob), and marine data monitoring and analysis system to
coastal erosion, which impact ecosystems and socio- support disaster mitigation and sustainable coastal
economic activities in coastal communities[1][2]. zone management.

According to the 2024 report from the Regional The frequency of high waves in the northern
Disaster Management Agency (BPBD) of Central Java waters is relatively low compared to other
Java, economic losses from the effects of flooding islands, but the waves can reach up to 2.6 meters[3].
and rob in Semarang-Demak reached 1.6 trillion IDR. In addition to waves, which vary in height, wave
Furthermore, the Tide Eye Indonesia research team period, and wave direction[1], one of the influences
reports that the economic losses from flooding and on waves is wind, particularly wind direction and
rob along the northern coast of Central Java amount speed[1][3][5][6]. Other influential variables include
to 2.5 trillion IDR per year. Climate change and sea surface pressure, ocean currents (direction and
regional oceanographic activities have contributed to speed) [1][7].

the increase in Significant Wave Height (SWH) and The Semarang-Demak coastal area is one of the
Sea Level Rise (SLR) along the Semarang-Demak most vulnerable regions to the impacts of climate
coastal area[1]. change and sea level rise (SLR). The rise in sea level

High waves pose a threat to maritime safety, one and land subsidence are the primary causes of tidal
of which is caused by dominant wind patterns that flooding (rob) [4][8][9]. Additionally, the increase in
contribute to the occurrence of high waves[3]. This Significant Wave Height (SWH) and coastal erosion
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causes damage to infrastructure as well as disruptions
to port and fishing activities[1][4][8]. The Semarang-
Demak coastal area is a strategic region with dense
economic activity, including ports, fisheries, industry,
and settlements[9].

The oceanographic conditions of the Semarang-
Demak waters are highly complex, influenced by the
interaction of monsoon winds, ocean currents, and the
relatively flat topography of the seabed[4]. The issue
of SLR is caused by climate change and increasing
wave heights, which result in coastal land loss and
tidal flooding in the region[1]. The wave patterns in
this area show high spatial and temporal
variability[9]. The global SLR phenomenon has
increased the magnitude of HEX near the Javanese
coast by 0.7m-0.8m during 2010-2017, which
corresponds to seasonal sea level rise[10].

On average, the Java Sea experiences an SLR of
3.9 mm per year[1][10], including in the Semarang
and Demak waters. The rise in the Semarang waters
is 5.52 mm per year, which is validated with tidal
data from Semarang[l]. The primary factors
contributing to this are SLR caused by several main
elements such as lunar and solar gravity, as well as
SWH, especially due to severe weather. The impacts
of climate change in Central Java include tidal
flooding (rob) caused by tidal wave surges[11]. The
phenomenon of sea level rise and land subsidence has
occurred along the Central Java coast, particularly in
Semarang, Pekalongan, and Demak[12][13][14].
This is the main cause of hydrometeorological
disasters, particularly tidal flooding in these
areas[13][15]. Consequently, further actions are
needed from stakeholders to mitigate the worsening
hydrometeorological disasters along the Semarang-
Demak coast[1].

These events require an analytical approach
capable of grouping wave characteristics based on
dominant physical parameters. A comprehensive
understanding of these wave patterns is crucial to
support early warning systems, coastal spatial
planning, and disaster mitigation[1][16]. Therefore,
an effective data analysis approach such as clustering
is needed to group sea wave data based on their
characteristics, enabling the identification of key
patterns that contribute to the formation of high
waves[17]. A data-driven approach capable of
accurately analyzing the patterns and dynamics of sea
waves can support an early warning system in this
area[1][17].

The use of artificial intelligence (AI) methods is
highly relevant for providing solutions in
oceanography, one of which is for sea wave
detection. The K-Means algorithm is effective for
clustering sea wave data based on shared
characteristics[17][18]. In this study, K-Means was
used to cluster sea level variability, which is related
to wave behavior[17], including wave disasters[18].
K-Means has been shown to accurately identify
differences in wave Stokes profiles, demonstrating its

ability to differentiate
characteristics[19].

Performance evaluation of K-Means for annual
coastal bed evolution shows that the algorithm is
robust in clustering coastal evolution data based on
similar characteristics[20]. K-Means also identifies
natural patterns in time series data without requiring
initial labels, making it suitable for exploring
previously uncharted wave characteristics[18]. K-
Means effectively distinguishes complex wave
profiles[19]. Therefore, K-Means is wused for
clustering coastal evolution data, which can be
adapted to identify risk zones based on wave
characteristics[20].

The K-Means algorithm has shown better
performance compared to DBSCAN, based on
silhouette index parameters for oceanographic
data[21]. K-Means excels in large datasets and
provides easily interpretable outputs for operational
coastal analysis[22]. K-Means provides stable and
representative cluster structures for wave dynamics,
while DBSCAN is more sensitive to parameters and
tends to label rare conditions as noise[23]. This is
particularly relevant for wave datasets in tropical
regions with strong seasonal variability, such as
Semarang—Demak.

Based on the existing issues and supporting
references, the objective of this study is to develop a
clustering model for sea waves in the Semarang—
Demak waters using the K-Means algorithm to
support risk zoning systems and maritime disaster
mitigation. The contribution of this research is the
development of a clustering model for tropical
oceanographic data, particularly in the northern
Semarang-Demak waters, which can be used as a
reference for maritime navigation and coastal disaster
mitigation.

2. RESEARCH METHOD

complex wave

In general, the stages of this research include
literature study and data collection, data
preprocessing, K-Means clustering modeling, and
evaluation and recommendation of results. The
complete stages can be seen in Figure 1.
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Figure 1. K-Means Modeling Method for SWH



Mulyani and Supriyanto, CLUSTERING ANALYSIS OF SIGNIFICANT WAVE ... 287

2.1 Data Collection

This research is a development of the previous
study conducted by Ganis & Supriyanto (2025)[1].
While the previous study focused on prediction, this
study performs clustering using the K-Means
algorithm. The data used is the same as in the
previous study, specifically weather data from the
Semarang City and Demak Regency regions that
influence the Significant Wave Height (SWH). The
data was obtained from the Maritime Meteorological
Station of the Meteorology, Climatology, and
Geophysics Agency (BMKG) Central Java. The data
was collected from two observation points
representing the water conditions in the study area.

The weather data used is daily data from 2019 to
2024 (6 years), consisting of 2,192 records. The data
variables include: significant wave height (hs), wave
period (t01), wave direction (dir), ocean current speed
(cm/s), and sea surface pressure (hPa). All these
parameters were chosen because they have a strong
relationship with the formation and dynamics of sea
waves. In addition to the primary variables,
supporting variables were also required for
conducting the wave clustering analysis, as shown in

Table 1.
Table 1. SWH Dataset Structure

Variable Description

Name
Date Data observation time is in daily datetime format.
Average  Average daily wind speed (m/s), an indicator of the
Speed general condition of the surface atmosphere.

The maximum daily wind speed (m/s) reflects the
highest wind intensity.

Wind direction (0-360°) indicates the dominant
wind movement pattern.

Current  Surface ocean current velocity (cm/s) plays a role in
Speed energy distribution in the waters.

Air pressure (hPa) is used as an indicator of local

Max Speed

Direction

Pressure atmospheric conditions.
hs Significant wave height (m) is the target variable for
prediction and classification.
01 The average wave period (seconds) describes the
interval between waves.
dir Wave arrival direction (0-360°), representing the
direction of wave energy propagation.
The average aggregate value of daily parameters
Average . . okt
provides an overview of general conditions.
The highest value of the combined parameter on a
Max . .
single observation day.
. The lowest value of the combined parameter over a
Min . X
daily period.
The year extracted from the Date variable is used in
Year .
annual trend analysis.
Month derived from Date, used for seasonal
Month . . .
identification.
SWH Wave height class label (Calm — Extreme) based on

hs value threshold.

The data, which has been saved in .xlIsx or .csv
format, is reorganized by including important
attributes that represent the features or labels for each
observation record. This step is crucial to ensure that
each variable to be used in the detection analysis
process is well-structured and consistent.

2.2. Data Preprocessing
The raw data that has been collected undergoes a

preprocessing stage to ensure its completeness,
consistency, and quality. This stage includes data
cleaning, handling missing values, normalization, and
variable transformation according to the needs of
machine learning algorithms. The preprocessing steps
are as follows:

1. Data Cleaning. This step is performed after the
data has been collected, and the data saved
in xlsx and .csv formats is reorganized by
including important attributes that represent
features or labels for each observation record.
This step is essential to ensure that each variable
to be used in the classification and clustering
analysis process is  well-structured and
consistent.

2. Normalization and Data Completeness Check.
This process checks for missing values and
ensures that the values are within reasonable
statistical limits. Data that is deemed valid is data
that does not contain missing values and has a
distribution of values within statistically
reasonable boundaries. The results of the check
indicate that out of a total of 2,192 daily
observation records from 2019 to 2024, there
was one record with missing values in some
parameters, such as Current Speed, vektor u, and
vektor v. Therefore, the total valid (clean) data
used in the analysis process consists of 2,191
records. The structure of the data after cleansing
and feature selection, which forms the input
predictors and SWH detection labels, can be seen
in Figure 2.
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4 8.556446

2187 3.801758 321.706035 190%.820833 1011. laa7.
2188 3.70300% 316.450726 1929.320833 1011. 12@7.
2189 3.850586 323.915847 1009.8203833 1611. 10a7.
1887 .
18a7.

13.483282
13.483292
13.483292
13.483292
13.483292

2198 4.131836 322.546425 10@9.328333 1611.

1
2
5
8
4.511729 312.718474 1011.378833 1013.4 1889.
5
5
5
5
2191 4.988203 319.191834 10@9.828833 1011.5

BB e e

vektor_u (cm/s) wvektor_v (cm/s) Arah ke (derajat)

2] -9.399663 -1.175148 262.873843
1 -9.618452 -8.937628 264.481554
2 -9.8372480 -8.7ae822 265.929265
3 -8.287500 -2.312588 254489854
4 -7.912581 -2.562588 252.855213
2187 11.847485 -1.757568 99.839553
21388 11.247485 -1.757568 99.839553
2189 11.847485 -1.757568 99.839553
2198 11.847485 -1.757568 99.8395532
2191 11.847485 -1.757568 99.839553

Figure 2. Data Structure of SWH Variables After Data Cleansing

These steps aim to ensure that the data used for
detection analysis meets quality standards and
enhances the reliability of the classification and
regression models built. This preprocessing approach
aligns with practices in studies of prediction,
classification, or clustering of waves, emphasizing
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the cleaning of missing values, normalization, and

feature selection to maintain the reliability of the

machine learning models [1]. During this stage,
correlations between influential variables are also
created in the form of heatmaps and bar charts.

3. Calculation of Average SWH. This is done by
calculating the average SWH for each month
(January-December) from 2019 to 2024. This
average is used as a basis for determining which
months correspond to calm, low, moderate, high,
and extreme sea waves (hs). Based on these
monthly SWH averages, an accumulative SWH
clustering for the Semarang-Demak waters can
be established. Additionally, it is used to identify
the SWH and SLR trends for each year.

2.3. Clustering Modeling with K-Means
The K-Means method was chosen as the

clustering model for the SWH in the Semarang-

Demak waters based on the studies by Ganis and

Supriyanto (2025) [24], Li et al. (2025) [17], and Lin

et al. (2025)[18]. The K-Means clustering steps are as

follows:

1. Cluster Data Preparation. Select relevant
variables (features), and ensure that the data has
been normalized to ensure the suitability of input
for the K-Means model.

2. Determining the Optimal Number of Clusters
(K). The Elbow Method is used to determine the
optimal K value by examining the trade-off
between the number of clusters and WCSS
(Within-Cluster Sum of Squares). The formula:

WCSS k = 2 (x.i — c k)2 @)
Information:
x_i: data points in cluster k
c_k : centroid of cluster k

3. K-Means Implementation. The K-Means
algorithm is applied to divide the data into
clusters based on the proximity to centroids, with
cluster quality evaluation using Silhouette Score
(s) and Davies-Bouldin Index (DBI).

— The Silhouette Score metric is used to calculate
the ratio between the proximity of a data point to
its own cluster (cohesion) and the proximity to
the nearest cluster (separation). A value close to

+1 indicates well-formed clusters. The formula:
b—-a

s= —— )

max (a,b)

Information:
a :average intra-cluster distance
b :average inter-cluster distance

— The DBI metric is used to measure the
comparison between the distance between
clusters and the dispersion within clusters. A
lower DBI value indicates better-formed clusters,
as it suggests a larger distance between clusters
and greater compactness within each cluster. The
formula:

Max Si+Sj

— lyn
DBI = n LGj:’ti(dij (3)
Information:
n : number of clusters

S i : measure of dispersion of cluster i
d(c i, c_j): distance between centroids(i and j)
max : taken for each cluster i relative to j

2.4. Evaluation of Results and Recommendations

The evaluation of clustering results aims to assess
how well K-Means can map sea wave conditions in
the Semarang-Demak region based on the selected
parameters. The evaluation is conducted using two
main metrics, namely Silhouette Score (S) and
Davies-Bouldin Index (DBI), which provide insights
into the cohesion and separation of clusters based on
the average monthly wave heights (January—
December) from 2019 to 2024. The activities
conducted include:

1. Analysis of clustering results. The clustering
results are analyzed to identify key patterns in
the dynamics of sea waves in the study area, such
as clusters with low, high, or extreme SWH. This
mapping will help understand how sea conditions
change over time and form seasonal patterns.

2. Recommendations for management. Based on
the clustering results, this study provides
recommendations for managing and mitigating
sea wave risks in the Semarang-Demak region.
For example, identifying high-risk zones can aid
in coastal disaster planning and response, as well
as port and fisheries infrastructure management.

3. Model improvements and future work.
Recommendations for future research may
include using other algorithms such as DBSCAN
to address outliers or more complex wave
density variations, or time-series-based modeling
to dynamically predict SWH and SLR trends.
These evaluation steps provide a deeper

understanding of the characteristics of sea waves in

the Semarang-Demak area and offer data-driven
solutions for improving maritime navigation and
better coastal management.

3. RESULT AND DISCUSSION

This study applies the K-Means Clustering
algorithm to group sea wave data in the coastal area
of Semarang—Demak using daily weather datasets
from the 2019-2024 period. Based on the stages and
methods described in the previous chapter, the
analysis and results can be explained as follows.

3.1 Pre-processing Results

Based on the data structure resulting from the
normalization process of the Significant Wave Height
(SWH) as shown in Figure 1, the correlation between
the involved variables can be calculated. The
correlations between the variables in the dataset and
the target SWH (hs) are illustrated in the heatmap
shown in Figure 3.
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Figure 3. Correlation Heatmap of SWH Variables

Based on Figure 3, the variables that influence
SWH are wave height (hs): 1.0, wave period (t01):
1.0, wind direction (dir): 0.994, and current velocity
(cm/s): 0.197. The wind direction (dir) variable
shows a very high correlation with SWH, indicating
that wind direction strongly affects sea wave height.
Similarly, the wave period (t01) has a very strong and
negative correlation with SWH, meaning that the
longer the wave period, the smaller the likelihood of
large waves occurring.

Furthermore, since sea wave height (hs) is the
main variable and the target of the clustering process,
its average value needs to be calculated. The average
value is computed based on monthly averages from
2019 to 2024. The results are shown in Figure 4.
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Figure 4. Average SWH from 2019 to 2024

In Figure 4, the highest average values occur in
January (0.27 m) and February (0.25 m), reflecting
the peak of the high wave season caused by westerly
winds. Subsequently, the hs values decrease sharply
and reach minimum conditions from April to
November, ranging between 0.06—0.08 m, indicating
a calm sea period. In December, wave heights rise
again to around 0.18 m, marking the transition toward
the next high wave season. This pattern is highly
consistent on a seasonal basis and shows that the
December—February period represents the highest
wave risk season. This information is crucial as a
basis for maritime navigation planning, coastal
activities, and early warning systems for marine
hazards.

3. 2 K-Means Clusterization

The clustering results in this study show that the
K-Means algorithm successfully divided the sea wave
data in the Semarang—Demak coastal area into three
main groups that are consistent with seasonal
oceanographic conditions. To obtain an initial
overview of the data characteristics, the significant
wave height (hs) values were classified into
categorical classes (SWH_Class). This classification
is based on the standard BMKG/WMO thresholds:
Calm (0-0.5 m), Slight (0.5-1.25 m), Moderate
(1.25-2.5 m), and Rough (>2.5 m). The frequency
distribution resulting from the categorization of daily
observation data for the 2019-2024 period is
presented in Table 2.

Table 2. Distribution of SWH Classes

Class Total Percentage (%)
Smooth 1475 67.3
Slight 444 20.3
Moderate 236 10.8
Rough 36 1.6
Total 2191 100

The class distribution in Table 2 was obtained
from daily observation data of significant wave
height (hs) during the 2019-2024 period at the
Tanjung Emas Maritime Meteorological Station,
Semarang. The class determination process was
carried out by converting hs values into SWH_Class
categories based on the standard BMKG/WMO
thresholds: Calm (0-0.5 m), Slight (0.5-1.25 m),
Moderate (1.25-2.5 m), and Rough (>2.5 m). The
distribution, which is dominated by calm—slight
categories, is consistent with the characteristics of
short-fetch tropical waters and remains relevant for
the development of computationally efficient support
vector models on daily wave data[1].

Based on the data shown in Figure 2, out of a
total of 2,191 valid records, the majority fall into the
Calm category with 1,475 records (67.3%), followed
by Slight with 444 records (20.3%), Moderate with
236 records (10.8%), and Rough with 36 records
(1.6%). These results indicate that wave conditions in
the Semarang—Demak waters during the observation
period were generally dominated by calm to low sea
states, while high wave conditions occurred only
occasionally and in very limited numbers.

It should be noted that the distribution in Table 2
represents a classification result based on the official
BMKG/WMO thresholds, which differs from Table 3
that presents the clustering results using the K-Means
algorithm. Classification uses fixed thresholds to
define categories, whereas clustering groups data
based on natural patterns of oceanographic variables.

To determine the optimal number of clusters (K)
in K-Means, the Elbow Method was applied, and the
visualization results are shown in Figure 5.
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Figure 5. Visualization of the Elbow Method for SWH

Based on Figure 5, further analysis was
conducted to determine the optimal number of SWH
clusters. In Figure 5, the X-axis represents the
number of clusters (K) ranging from 1 to 10, while
the Y-axis represents the Inertia value. Inertia
(Within-Cluster Sum of Squares / WCSS) indicates
the total squared distance between each data point
and its cluster centroid. As the value of K increases,
the inertia decreases because the data is divided into
more clusters, reducing the average distance between
data points and their centroids. However, after a
certain point, the decrease in inertia begins to slow
down—this point is known as the 'elbow point'. In
Figure 5, the most distinct elbow appears around K =
3 or 4. Beyond K > 4, the reduction in inertia
becomes less significant, meaning that adding more
clusters does not substantially improve accuracy but
increases model complexity.

The choice of K = 3 as the optimal number of
clusters is based on the substantial decrease in inertia
from K = 2 to K = 3. After K = 3, the reduction
becomes relatively slow, indicating that adding more
clusters  provides  diminishing  returns in
representation efficiency.

This reasoning is further supported by the
Silhouette Score method, which measures how
similar a data point is to its own cluster compared to
other clusters. The Silhouette Score obtained is 0.725,
where K = 3 still yields a high value, indicating well-
separated clusters (a value close to 1 signifies very
good separation). This is also supported by the
Davies-Bouldin Index (DBI) value of 0.425. A DBI
value below 0.5 is generally considered good,
suggesting that K = 3 provides a satisfactory
clustering result for tropical oceanographic data. This
finding is consistent with prior studies showing that
appropriate  feature  selection enhances the
separability of K-Means clusters[17].

Figure 6 presents the 2D PCA visualization of
the SWH clustering results. The visualization shows
the distribution of data grouped into three clusters,
each represented by a different color. Cluster 0 (red),
Cluster 1 (blue), and Cluster 2 (green) are distinctly
separated. Clusters 0 and 2 (green and red) are more
clearly separated along PCA1 (the first principal
component), while Cluster 1 (blue) appears more
dispersed along the same axis. This indicates that
PCA successfully reduced the data dimensionality

and effectively separated the clusters based on the
most relevant principal components.

Visualisasi Klaster SWH (PCA 2D)
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Figure 6. Visualization of SWH Clusters using PCA (3 Clusters)

The data shown in Figure 6 can be grouped into
the following clusters:

a. Cluster 0 (green). This cluster exhibits high
density along the PCA2 axis, indicating that the
data within this cluster are more compact and
concentrated within a specific area. It represents
conditions with calmer seas (low SWH), as
reflected by the concentrated distribution and
lower variation along both  principal
components.

b. Cluster 1 (blue). This cluster appears more
dispersed, suggesting greater variability in
SWH. It represents more diverse sea conditions,
ranging from moderate to high SWH. The wider
spread along both PCA1 and PCA2 indicates
larger variations within this cluster.

c. Cluster 2 (red). This cluster shows a broader
distribution, indicating higher variability across
both PCA1 and PCA2. It represents conditions
of extreme sea waves (very high SWH),
characterized by a wide dispersion along PCA2,
which reflects high fluctuations in sea wave
activity.

PCA effectively reduced the data into two
principal dimensions, clearly distinguishing the
clusters. This demonstrates that the first and second
principal components contain significant information
for separating SWH data based on clustering results.
To further understand the characteristics of each
cluster and to predict cluster membership for new
data generated in the K-Means clustering process,
statistical summaries and cluster classifications were
developed.

After determining that the optimal number of
clusters is K = 3, the number of data points and their
respective percentages were calculated, along with
descriptive statistics for each cluster. Cluster 0
contains 1,407 data points (74.48%), Cluster 1
contains 67 data points (3.55%), and Cluster 2
contains 415 data points (21.97%). Additionally,
descriptive statistics were computed for each K-
Means cluster, including the mean, standard
deviation, minimum, median, and maximum values.
The results are presented in Table 3.
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Table 3. Statistical Values K = 3 for the Period 2019-2024
Cluster Sum Mean Std Min  25% 50% 75%  Max

0 1,407 0.144 0.131 0.000 0.050 0.100 0.205 1.2832
1 67 47.80 0.429 47.078 47.441 47.805 48.169 48.532
2 415 0611 0411 0.005 0.299 0.538 0.837 2.145

The difference in proportions represents the
variation of sea conditions, ranging from calm seas to
transitional and high-energy wave conditions. These
results are consistent with the PCA and hs—t01 scatter
visualizations, which show a clear separation between
clusters, confirming that the Semarang—Demak
waters during the 2019-2024 period were
predominantly characterized by calm to transitional
sea states, with high-wave events occurring only
occasionally.

It should be noted that the cluster numbering (0,
1, 2) in Table 3 is an automatic label generated by the
K-Means algorithm and does not indicate an ordered
ranking of average wave height. Therefore, even
though Cluster 1 has the highest hs value, its position
is not placed at the top. The numbering simply serves
as a group identifier. Furthermore, the clustering
results in Table 3 differ from the wave classification
in Table 2, which is based on the SWH thresholds
(calm, low, moderate, high). Thus, clustering reveals
the natural patterns of data without predefined

categories, whereas classification uses official
categorical standards.
Moreover, the clustering results can be

interpreted within the context of risk mitigation.
Cluster 0, representing calm sea conditions, can be
categorized as “Safe”; Cluster 1, with transitional
characteristics, as “Alert”; and Cluster 2, with
relatively higher wave height and current speed, as
“Hazardous.” Hence, this table not only illustrates the
statistical separation of data patterns but also provides
practical relevance in supporting an early warning
system for the Semarang—Demak coastal waters. The
observed pattern of ‘calm — transition — higher
energy,” emerging from hs, wave period, and current
variables, aligns with prior evidence that K-Means
can effectively identify representative annual sea
conditions for coastal prediction and risk
management purposes.

In a previous study by Erutjhahjo and Supriyanto
(2025)[1], SLR and SWH in the northern coast of
Semarang-Demak were predicted without creating
SWH clusters, thus leaving the hazardous SWH
conditions for maritime navigation and coastal
hydrometeorological disasters unidentified. This
study determines SWH clusters, including extreme
heights, to enable mitigation of maritime navigation
risks and coastal hydrometeorological disasters.

3.3 Evaluation and Recommendations

Based on the results of data analysis and testing,
this study produced the following assessments:

a. After collecting daily weather data from 2019—
2024, the main influencing variables were
identified as follows: significant wave height
(hs): 100%, wave period (t01): 100%, and wind

direction (dir): approximately 99%. Meanwhile,

other variables such as ocean current velocity

(cm/s): ~20%, and surface air pressure (hPa):

<1%, showed minor influence.

b. During the data cleansing and normalization
process, some missing values were detected.
However, during the testing phase, several
outliers were still observed, although their effect
was not significant. This was particularly evident
during the PCA test, which suggests that the
presence of outliers might be due to human input
errors during manual data entry by weather
station operators.

c. Although the clustering result with K = 3 produced
good performance based on the Silhouette Score
and Davies—Bouldin Index (DBI), further testing
with K = 4 is recommended. This would help
determine whether the clustering quality
improves, and whether the data distribution
becomes more consistent with the linearity of
wave classification based on WMO (World
Meteorological Organization) standards.

d. The research would be more comprehensive if
extended to include prediction and classification
analyses, allowing for a clearer understanding of
inter-variable  relationships ~ and  model
consistency.

Based on the testing and evaluation results,
several recommendations are proposed in this study
as follows:

a. Further clustering tests should be conducted
using alternative algorithms, directly applying
the main influencing wvariables, namely
significant wave height (hs), wave period (t01),
and wind direction (dir).

b. During the data cleansing and normalization
process, invalid or inconsistent data should be
carefully reviewed and, if necessary, verified
with the original weather data operators before
removal or correction. This verification process
is essential to reduce potential outliers during
PCA (Principal Component Analysis) and
clustering tests.

c. Additional testing using different values of K,
such as K = 4, is recommended to confirm
whether better clustering performance can be
achieved and to ensure higher accuracy in
representing oceanographic patterns.

d. A more comprehensive study combining
prediction and classification analyses on the
same dataset and study area would provide
deeper insights and more complete information
for marine navigation risk mitigation and coastal
management, particularly for the Semarang—
Demak coastal region.

4. CONCLUSION

This study successfully developed a clustering
model for sea waves in the Semarang—Demak coastal
waters using the K-Means algorithm. The clustering
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results show that Significant Wave Height (SWH)
can be categorized into three primary clusters: calm,
moderate, and high sea waves. Cluster 0 represents
calm sea conditions with low SWH, Cluster 1
encompasses moderate to high waves, and Cluster 2
represents extreme wave conditions. The evaluation
metrics—Silhouette Score (0.725) and DBI (0.425),
indicate that clustering with K = 3 provides well-
separated and representative clusters.

The findings of this research make a significant
contribution to understanding the dynamics of sea
waves in the Semarang—Demak region, providing
valuable insights for disaster mitigation, coastal
management planning, and maritime navigation
safety. The application of PCA for dimensionality
reduction prior to clustering also proved effective in
enhancing the separability of the data.

Although the developed model demonstrates
strong performance, further improvement is
recommended through the application of alternative
clustering algorithms and enhanced data quality
verification. Future studies integrating other
clustering methods, along with predictive and
classification analyses, will offer a more
comprehensive understanding and support more
informed decision-making for coastal risk mitigation
and marine disaster management in the Semarang—
Demak coastal region.
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