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Abstract 

 

Global climate change has led to an increase in the frequency and intensity of extreme events at sea, including in 

the Semarang-Demak coastal area. This region is highly vulnerable to the dynamics of Significant Wave Height 

(SWH), sea level rise, and coastal land subsidence. As a result, in addition to disrupting maritime navigation, 

frequent occurrences of tidal flooding (rob) have caused significant disturbances to economic activities and 

settlements in the coastal area. This study aims to develop a clustering model for SWH in the Semarang-Demak 

waters using the K-Means algorithm. The data used includes oceanographic and meteorological parameters from 

the Tanjung Emas Semarang Maritime Meteorological Station (BMKG) for the period 2019-2024. The 

clustering results show that K-Means successfully formed three clusters of sea waves representing calm, 

moderate, and high waves. Model evaluation using the Silhouette Score with a value of 0.725 and the Davies-

Bouldin Index (DBI) of 0.425 indicates good performance, with K=3 as the optimal cluster. Temporal analysis 

reveals a clear seasonal pattern, where high energy conditions dominate during the west season (December-

February), while calm conditions are prevalent during the east season (June-August). These findings provide a 

foundation for early warning systems and disaster risk management in this region, with further clustering tests 

using other algorithms and the need for improved data quality. 
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1. INTRODUCTION 

Global climate change has increased the 

frequency and intensity of extreme events at sea, such 

as rising wave heights, tidal flooding (rob), and 

coastal erosion, which impact ecosystems and socio-

economic activities in coastal communities[1][2]. 

According to the 2024 report from the Regional 

Disaster Management Agency (BPBD) of Central 

Java, economic losses from the effects of flooding 

and rob in Semarang-Demak reached 1.6 trillion IDR. 

Furthermore, the Tide Eye Indonesia research team 

reports that the economic losses from flooding and 

rob along the northern coast of Central Java amount 

to 2.5 trillion IDR per year. Climate change and 

regional oceanographic activities have contributed to 

the increase in Significant Wave Height (SWH) and 

Sea Level Rise (SLR) along the Semarang-Demak 

coastal area[1]. 

High waves pose a threat to maritime safety, one 

of which is caused by dominant wind patterns that 

contribute to the occurrence of high waves[3]. This 

phenomenon has become increasingly frequent in 

tropical regions such as Indonesia, which has 

complex oceanographic dynamics[4]. This condition 

demands the presence of an accurate and adaptive 

marine data monitoring and analysis system to 

support disaster mitigation and sustainable coastal 

zone management. 

The frequency of high waves in the northern 

Java waters is relatively low compared to other 

islands, but the waves can reach up to 2.6 meters[3].   

In addition to waves, which vary in height, wave 

period, and wave direction[1], one of the influences 

on waves is wind, particularly wind direction and 

speed[1][3][5][6].  Other influential variables include 

sea surface pressure, ocean currents (direction and 

speed) [1][7]. 

The Semarang-Demak coastal area is one of the 

most vulnerable regions to the impacts of climate 

change and sea level rise (SLR). The rise in sea level 

and land subsidence are the primary causes of tidal 

flooding (rob) [4][8][9]. Additionally, the increase in 

Significant Wave Height (SWH) and coastal erosion 
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causes damage to infrastructure as well as disruptions 

to port and fishing activities[1][4][8].  The Semarang-

Demak coastal area is a strategic region with dense 

economic activity, including ports, fisheries, industry, 

and settlements[9].  

The oceanographic conditions of the Semarang-

Demak waters are highly complex, influenced by the 

interaction of monsoon winds, ocean currents, and the 

relatively flat topography of the seabed[4]. The issue 

of SLR is caused by climate change and increasing 

wave heights, which result in coastal land loss and 

tidal flooding in the region[1]. The wave patterns in 

this area show high spatial and temporal 

variability[9]. The global SLR phenomenon has 

increased the magnitude of HEX near the Javanese 

coast by 0.7m–0.8m during 2010–2017, which 

corresponds to seasonal sea level rise[10]. 

On average, the Java Sea experiences an SLR of 

3.9 mm per year[1][10],  including in the Semarang 

and Demak waters. The rise in the Semarang waters 

is 5.52 mm per year, which is validated with tidal 

data from Semarang[1]. The primary factors 

contributing to this are SLR caused by several main 

elements such as lunar and solar gravity, as well as 

SWH, especially due to severe weather. The impacts 

of climate change in Central Java include tidal 

flooding (rob) caused by tidal wave surges[11].  The 

phenomenon of sea level rise and land subsidence has 

occurred along the Central Java coast, particularly in 

Semarang, Pekalongan, and Demak[12][13][14].  

This is the main cause of hydrometeorological 

disasters, particularly tidal flooding in these 

areas[13][15]. Consequently, further actions are 

needed from stakeholders to mitigate the worsening 

hydrometeorological disasters along the Semarang-

Demak coast[1].  
These events require an analytical approach 

capable of grouping wave characteristics based on 

dominant physical parameters. A comprehensive 

understanding of these wave patterns is crucial to 

support early warning systems, coastal spatial 

planning, and disaster mitigation[1][16]. Therefore, 

an effective data analysis approach such as clustering 

is needed to group sea wave data based on their 

characteristics, enabling the identification of key 

patterns that contribute to the formation of high 

waves[17]. A data-driven approach capable of 

accurately analyzing the patterns and dynamics of sea 

waves can support an early warning system in this 

area[1][17].  

The use of artificial intelligence (AI) methods is 

highly relevant for providing solutions in 

oceanography, one of which is for sea wave 

detection. The K-Means algorithm is effective for 

clustering sea wave data based on shared 

characteristics[17][18]. In this study, K-Means was 

used to cluster sea level variability, which is related 

to wave behavior[17],  including wave disasters[18].  

K-Means has been shown to accurately identify 

differences in wave Stokes profiles, demonstrating its 

ability to differentiate complex wave 

characteristics[19].  

Performance evaluation of K-Means for annual 

coastal bed evolution shows that the algorithm is 

robust in clustering coastal evolution data based on 

similar characteristics[20].  K-Means also identifies 

natural patterns in time series data without requiring 

initial labels, making it suitable for exploring 

previously uncharted wave characteristics[18]. K-

Means effectively distinguishes complex wave 

profiles[19]. Therefore, K-Means is used for 

clustering coastal evolution data, which can be 

adapted to identify risk zones based on wave 

characteristics[20].  

The K-Means algorithm has shown better 

performance compared to DBSCAN, based on 

silhouette index parameters for oceanographic 

data[21]. K-Means excels in large datasets and 

provides easily interpretable outputs for operational 

coastal analysis[22]. K-Means provides stable and 

representative cluster structures for wave dynamics, 

while DBSCAN is more sensitive to parameters and 

tends to label rare conditions as noise[23].  This is 

particularly relevant for wave datasets in tropical 

regions with strong seasonal variability, such as 

Semarang–Demak. 

Based on the existing issues and supporting 

references, the objective of this study is to develop a 

clustering model for sea waves in the Semarang–

Demak waters using the K-Means algorithm to 

support risk zoning systems and maritime disaster 

mitigation. The contribution of this research is the 

development of a clustering model for tropical 

oceanographic data, particularly in the northern 

Semarang-Demak waters, which can be used as a 

reference for maritime navigation and coastal disaster 

mitigation. 

2. RESEARCH METHOD 

In general, the stages of this research include 

literature study and data collection, data 

preprocessing, K-Means clustering modeling, and 

evaluation and recommendation of results. The 

complete stages can be seen in Figure 1. 
LITERATURE STUDY AND DATASET COLLECTION

Literature Study and Model Adjustment used 
in research

Data Acquisition and Collection of SWH 
Variables 2019-2024 (Wave Height and Period, 

Wind, Air Pressure, Ocean Currents, etc.)

Advanced data class formation to structured 
data formation in Excel and .csv format.

PRE-PROCESSING DATA

Data Checking and Cleaning including checking 
for empty data

Normalization and Completeness of Data/ 
Influential variables and correlations between 

variables

Calculation of the average SWH 2019-2024 
and a monthly report summary (January – 

December)

 K-MEANS CLUSTERIZATION MODELING

Reading and preparing data for PCA to 
determine the Number of Clusters (K)

Validated Cluster (K)

Silhouette Score 

Metric (Silhouette 

Method)

EVALUATION OF RESULTS AND RECOMMENDATIONS

Evaluation of the performance of the K-Means 
Clustering model

Average monthly wave height (January-
December) 2019-2024

Policy recommendations related to SWH  of 
Semarang-Demak Coast

Devies Boulding Index 

(DBI Method) Metric Performance Results of the K-Means Model on 
SWH

 
Figure 1. K-Means Modeling Method for SWH 



Mulyani and Supriyanto, CLUSTERING ANALYSIS OF SIGNIFICANT WAVE …   287 

2.1 Data Collection  

This research is a development of the previous 

study conducted by Ganis & Supriyanto (2025)[1].  

While the previous study focused on prediction, this 

study performs clustering using the K-Means 

algorithm. The data used is the same as in the 

previous study, specifically weather data from the 

Semarang City and Demak Regency regions that 

influence the Significant Wave Height (SWH). The 

data was obtained from the Maritime Meteorological 

Station of the Meteorology, Climatology, and 

Geophysics Agency (BMKG) Central Java. The data 

was collected from two observation points 

representing the water conditions in the study area. 

The weather data used is daily data from 2019 to 

2024 (6 years), consisting of 2,192 records. The data 

variables include: significant wave height (hs), wave 

period (t01), wave direction (dir), ocean current speed 

(cm/s), and sea surface pressure (hPa). All these 

parameters were chosen because they have a strong 

relationship with the formation and dynamics of sea 

waves. In addition to the primary variables, 

supporting variables were also required for 

conducting the wave clustering analysis, as shown in 

Table 1. 
Table  1. SWH Dataset Structure 

Variable 

Name 
Description 

Date Data observation time is in daily datetime format. 

Average 

Speed 

Average daily wind speed (m/s), an indicator of the 

general condition of the surface atmosphere. 

Max Speed 
The maximum daily wind speed (m/s) reflects the 

highest wind intensity. 

Direction 
Wind direction (0–360°) indicates the dominant 

wind movement pattern. 

Current 

Speed 

Surface ocean current velocity (cm/s) plays a role in 

energy distribution in the waters. 

Pressure 
Air pressure (hPa) is used as an indicator of local 

atmospheric conditions. 

hs 
Significant wave height (m) is the target variable for 

prediction and classification. 

t01 
The average wave period (seconds) describes the 

interval between waves. 

dir 
Wave arrival direction (0–360°), representing the 

direction of wave energy propagation. 

Average 
The average aggregate value of daily parameters 

provides an overview of general conditions. 

Max 
The highest value of the combined parameter on a 

single observation day. 

Min 
The lowest value of the combined parameter over a 

daily period. 

Year 
The year extracted from the Date variable is used in 

annual trend analysis. 

Month 
Month derived from Date, used for seasonal 

identification. 

SWH 
Wave height class label (Calm – Extreme) based on 

hs value threshold. 

 

The data, which has been saved in .xlsx or .csv 

format, is reorganized by including important 

attributes that represent the features or labels for each 

observation record. This step is crucial to ensure that 

each variable to be used in the detection analysis 

process is well-structured and consistent. 

 

2.2. Data Preprocessing  

The raw data that has been collected undergoes a 

preprocessing stage to ensure its completeness, 

consistency, and quality. This stage includes data 

cleaning, handling missing values, normalization, and 

variable transformation according to the needs of 

machine learning algorithms. The preprocessing steps 

are as follows: 

1. Data Cleaning. This step is performed after the 

data has been collected, and the data saved 

in .xlsx and .csv formats is reorganized by 

including important attributes that represent 

features or labels for each observation record. 

This step is essential to ensure that each variable 

to be used in the classification and clustering 

analysis process is well-structured and 

consistent. 

2. Normalization and Data Completeness Check. 

This process checks for missing values and 

ensures that the values are within reasonable 

statistical limits. Data that is deemed valid is data 

that does not contain missing values and has a 

distribution of values within statistically 

reasonable boundaries. The results of the check 

indicate that out of a total of 2,192 daily 

observation records from 2019 to 2024, there 

was one record with missing values in some 

parameters, such as Current Speed, vektor_u, and 

vektor_v. Therefore, the total valid (clean) data 

used in the analysis process consists of 2,191 

records. The structure of the data after cleansing 

and feature selection, which forms the input 

predictors and SWH detection labels, can be seen 

in Figure 2. 

 

 

 

 
Figure 2. Data Structure of SWH Variables After Data Cleansing 

 

These steps aim to ensure that the data used for 

detection analysis meets quality standards and 

enhances the reliability of the classification and 

regression models built. This preprocessing approach 

aligns with practices in studies of prediction, 

classification, or clustering of waves, emphasizing 
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the cleaning of missing values, normalization, and 

feature selection to maintain the reliability of the 

machine learning models [1]. During this stage, 

correlations between influential variables are also 

created in the form of heatmaps and bar charts. 

3. Calculation of Average SWH. This is done by 

calculating the average SWH for each month 

(January-December) from 2019 to 2024. This 

average is used as a basis for determining which 

months correspond to calm, low, moderate, high, 

and extreme sea waves (hs). Based on these 

monthly SWH averages, an accumulative SWH 

clustering for the Semarang-Demak waters can 

be established. Additionally, it is used to identify 

the SWH and SLR trends for each year. 

 

2.3. Clustering Modeling with K-Means 

The K-Means method was chosen as the 

clustering model for the SWH in the Semarang-

Demak waters based on the studies by Ganis and 

Supriyanto (2025) [24], Li et al. (2025) [17], and Lin 

et al. (2025)[18]. The K-Means clustering steps are as 

follows: 

1. Cluster Data Preparation. Select relevant 

variables (features), and ensure that the data has 

been normalized to ensure the suitability of input 

for the K-Means model. 

2. Determining the Optimal Number of Clusters 

(K). The Elbow Method is used to determine the 

optimal K value by examining the trade-off 

between the number of clusters and WCSS 

(Within-Cluster Sum of Squares). The formula: 

WCSS_k =  Σ (x_i −  c_k)^2  (1) 

Information: 

x_i : data points in cluster k 

c_k : centroid of cluster k 

3. K-Means Implementation. The K-Means 

algorithm is applied to divide the data into 

clusters based on the proximity to centroids, with 

cluster quality evaluation using Silhouette Score 

(s) and Davies-Bouldin Index (DBI). 

− The Silhouette Score metric is used to calculate 

the ratio between the proximity of a data point to 

its own cluster (cohesion) and the proximity to 

the nearest cluster (separation). A value close to 

+1 indicates well-formed clusters. The formula: 

𝑠 =  
𝑏−𝑎

max (𝑎,𝑏)
   (2) 

Information: 

a    : average intra-cluster distance 

b    : average inter-cluster distance 

− The DBI metric is used to measure the 
comparison between the distance between 

clusters and the dispersion within clusters. A 

lower DBI value indicates better-formed clusters, 

as it suggests a larger distance between clusters 

and greater compactness within each cluster. The 

formula: 

𝐷𝐵𝐼 =  
1

𝑛
∑

𝑀𝑎𝑥
𝑗 ≠ 𝑖 

(
𝑠𝑖+𝑠𝑗

𝑑𝑖𝑗

𝑛
𝑖=𝑛   (3) 

Information: 

n   : number of clusters 

S_i : measure of dispersion of cluster i  

d(c_i, c_j): distance between centroids(i and j) 

max : taken for each cluster i relative to j 

2.4. Evaluation of Results and Recommendations 

The evaluation of clustering results aims to assess 

how well K-Means can map sea wave conditions in 

the Semarang-Demak region based on the selected 

parameters. The evaluation is conducted using two 

main metrics, namely Silhouette Score (S) and 

Davies-Bouldin Index (DBI), which provide insights 

into the cohesion and separation of clusters based on 

the average monthly wave heights (January–

December) from 2019 to 2024. The activities 

conducted include: 

1. Analysis of clustering results. The clustering 

results are analyzed to identify key patterns in 

the dynamics of sea waves in the study area, such 

as clusters with low, high, or extreme SWH. This 

mapping will help understand how sea conditions 

change over time and form seasonal patterns. 

2. Recommendations for management. Based on 

the clustering results, this study provides 

recommendations for managing and mitigating 

sea wave risks in the Semarang-Demak region. 

For example, identifying high-risk zones can aid 

in coastal disaster planning and response, as well 

as port and fisheries infrastructure management. 

3. Model improvements and future work. 

Recommendations for future research may 

include using other algorithms such as DBSCAN 

to address outliers or more complex wave 

density variations, or time-series-based modeling 

to dynamically predict SWH and SLR trends. 

These evaluation steps provide a deeper 

understanding of the characteristics of sea waves in 

the Semarang-Demak area and offer data-driven 

solutions for improving maritime navigation and 

better coastal management. 

3. RESULT AND DISCUSSION 

This study applies the K-Means Clustering 

algorithm to group sea wave data in the coastal area 

of Semarang–Demak using daily weather datasets 

from the 2019–2024 period. Based on the stages and 

methods described in the previous chapter, the 

analysis and results can be explained as follows. 

 

3. 1 Pre-processing Results 

Based on the data structure resulting from the 

normalization process of the Significant Wave Height 

(SWH) as shown in Figure 1, the correlation between 

the involved variables can be calculated. The 

correlations between the variables in the dataset and 

the target SWH (hs) are illustrated in the heatmap 

shown in Figure 3. 
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Figure 3. Correlation Heatmap of SWH Variables 

 

Based on Figure 3, the variables that influence 

SWH are wave height (hs): 1.0, wave period (t01): 

1.0, wind direction (dir): 0.994, and current velocity 

(cm/s): 0.197. The wind direction (dir) variable 

shows a very high correlation with SWH, indicating 

that wind direction strongly affects sea wave height. 

Similarly, the wave period (t01) has a very strong and 

negative correlation with SWH, meaning that the 

longer the wave period, the smaller the likelihood of 

large waves occurring. 

Furthermore, since sea wave height (hs) is the 

main variable and the target of the clustering process, 

its average value needs to be calculated. The average 

value is computed based on monthly averages from 

2019 to 2024. The results are shown in Figure 4. 
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Figure 4. Average SWH from 2019 to 2024 

 

In Figure 4, the highest average values occur in 

January (0.27 m) and February (0.25 m), reflecting 

the peak of the high wave season caused by westerly 

winds. Subsequently, the hs values decrease sharply 

and reach minimum conditions from April to 

November, ranging between 0.06–0.08 m, indicating 

a calm sea period. In December, wave heights rise 

again to around 0.18 m, marking the transition toward 

the next high wave season. This pattern is highly 

consistent on a seasonal basis and shows that the 

December–February period represents the highest 

wave risk season. This information is crucial as a 

basis for maritime navigation planning, coastal 

activities, and early warning systems for marine 

hazards. 

 

3. 2 K-Means Clusterization  

The clustering results in this study show that the 

K-Means algorithm successfully divided the sea wave 

data in the Semarang–Demak coastal area into three 

main groups that are consistent with seasonal 

oceanographic conditions. To obtain an initial 

overview of the data characteristics, the significant 

wave height (hs) values were classified into 

categorical classes (SWH_Class). This classification 

is based on the standard BMKG/WMO thresholds: 

Calm (0–0.5 m), Slight (0.5–1.25 m), Moderate 

(1.25–2.5 m), and Rough (>2.5 m). The frequency 

distribution resulting from the categorization of daily 

observation data for the 2019–2024 period is 

presented in Table 2. 
 

Table 2. Distribution of SWH Classes 

Class Total Percentage (%) 

Smooth  1475 67.3 

Slight 444 20.3 

Moderate 236 10.8 

Rough 36 1.6 

Total 2191 100 

 

The class distribution in Table 2 was obtained 

from daily observation data of significant wave 

height (hs) during the 2019–2024 period at the 

Tanjung Emas Maritime Meteorological Station, 

Semarang. The class determination process was 

carried out by converting hs values into SWH_Class 

categories based on the standard BMKG/WMO 

thresholds: Calm (0–0.5 m), Slight (0.5–1.25 m), 

Moderate (1.25–2.5 m), and Rough (>2.5 m). The 

distribution, which is dominated by calm–slight 

categories, is consistent with the characteristics of 

short-fetch tropical waters and remains relevant for 

the development of computationally efficient support 

vector models on daily wave data[1].  
Based on the data shown in Figure 2, out of a 

total of 2,191 valid records, the majority fall into the 

Calm category with 1,475 records (67.3%), followed 

by Slight with 444 records (20.3%), Moderate with 

236 records (10.8%), and Rough with 36 records 

(1.6%). These results indicate that wave conditions in 

the Semarang–Demak waters during the observation 

period were generally dominated by calm to low sea 

states, while high wave conditions occurred only 

occasionally and in very limited numbers. 

It should be noted that the distribution in Table 2 

represents a classification result based on the official 

BMKG/WMO thresholds, which differs from Table 3 

that presents the clustering results using the K-Means 

algorithm. Classification uses fixed thresholds to 

define categories, whereas clustering groups data 

based on natural patterns of oceanographic variables. 

To determine the optimal number of clusters (K) 

in K-Means, the Elbow Method was applied, and the 

visualization results are shown in Figure 5. 
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Figure 5. Visualization of the Elbow Method for SWH 

 

Based on Figure 5, further analysis was 

conducted to determine the optimal number of SWH 

clusters. In Figure 5, the X-axis represents the 

number of clusters (K) ranging from 1 to 10, while 

the Y-axis represents the Inertia value. Inertia 

(Within-Cluster Sum of Squares / WCSS) indicates 

the total squared distance between each data point 

and its cluster centroid. As the value of K increases, 

the inertia decreases because the data is divided into 

more clusters, reducing the average distance between 

data points and their centroids. However, after a 

certain point, the decrease in inertia begins to slow 

down—this point is known as the 'elbow point'. In 

Figure 5, the most distinct elbow appears around K = 

3 or 4. Beyond K > 4, the reduction in inertia 

becomes less significant, meaning that adding more 

clusters does not substantially improve accuracy but 

increases model complexity. 

The choice of K = 3 as the optimal number of 

clusters is based on the substantial decrease in inertia 

from K = 2 to K = 3. After K = 3, the reduction 

becomes relatively slow, indicating that adding more 

clusters provides diminishing returns in 

representation efficiency. 

This reasoning is further supported by the 

Silhouette Score method, which measures how 

similar a data point is to its own cluster compared to 

other clusters. The Silhouette Score obtained is 0.725, 

where K = 3 still yields a high value, indicating well-

separated clusters (a value close to 1 signifies very 

good separation). This is also supported by the 

Davies-Bouldin Index (DBI) value of 0.425. A DBI 

value below 0.5 is generally considered good, 

suggesting that K = 3 provides a satisfactory 

clustering result for tropical oceanographic data. This 

finding is consistent with prior studies showing that 

appropriate feature selection enhances the 

separability of K-Means clusters[17]. 

Figure 6 presents the 2D PCA visualization of 

the SWH clustering results. The visualization shows 

the distribution of data grouped into three clusters, 

each represented by a different color. Cluster 0 (red), 

Cluster 1 (blue), and Cluster 2 (green) are distinctly 

separated. Clusters 0 and 2 (green and red) are more 

clearly separated along PCA1 (the first principal 

component), while Cluster 1 (blue) appears more 

dispersed along the same axis. This indicates that 

PCA successfully reduced the data dimensionality 

and effectively separated the clusters based on the 

most relevant principal components. 

 
Figure 6. Visualization of SWH Clusters using PCA (3 Clusters) 

 

The data shown in Figure 6 can be grouped into 

the following clusters: 

a. Cluster 0 (green). This cluster exhibits high 

density along the PCA2 axis, indicating that the 

data within this cluster are more compact and 

concentrated within a specific area. It represents 

conditions with calmer seas (low SWH), as 

reflected by the concentrated distribution and 

lower variation along both principal 

components. 

b. Cluster 1 (blue). This cluster appears more 

dispersed, suggesting greater variability in 

SWH. It represents more diverse sea conditions, 

ranging from moderate to high SWH. The wider 

spread along both PCA1 and PCA2 indicates 

larger variations within this cluster. 

c. Cluster 2 (red). This cluster shows a broader 

distribution, indicating higher variability across 

both PCA1 and PCA2. It represents conditions 

of extreme sea waves (very high SWH), 

characterized by a wide dispersion along PCA2, 

which reflects high fluctuations in sea wave 

activity. 

PCA effectively reduced the data into two 

principal dimensions, clearly distinguishing the 

clusters. This demonstrates that the first and second 

principal components contain significant information 

for separating SWH data based on clustering results. 

To further understand the characteristics of each 

cluster and to predict cluster membership for new 

data generated in the K-Means clustering process, 

statistical summaries and cluster classifications were 

developed. 

After determining that the optimal number of 

clusters is K = 3, the number of data points and their 

respective percentages were calculated, along with 

descriptive statistics for each cluster. Cluster 0 

contains 1,407 data points (74.48%), Cluster 1 

contains 67 data points (3.55%), and Cluster 2 

contains 415 data points (21.97%). Additionally, 

descriptive statistics were computed for each K-

Means cluster, including the mean, standard 

deviation, minimum, median, and maximum values. 

The results are presented in Table 3. 
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Table 3. Statistical Values K = 3 for the Period 2019–2024 
Cluster Sum Mean  Std Min 25% 50%  75% Max 

0 1,407 0.144 0.131 0.000 0.050 0.100 0.205 1.2832 

1 67 47.80 0.429 47.078 47.441 47.805 48.169 48.532 

2 415 0.611 0.411 0.005 0.299 0.538 0.837 2.145 

 

The difference in proportions represents the 

variation of sea conditions, ranging from calm seas to 

transitional and high-energy wave conditions. These 

results are consistent with the PCA and hs–t01 scatter 

visualizations, which show a clear separation between 

clusters, confirming that the Semarang–Demak 

waters during the 2019–2024 period were 

predominantly characterized by calm to transitional 

sea states, with high-wave events occurring only 

occasionally. 

It should be noted that the cluster numbering (0, 

1, 2) in Table 3 is an automatic label generated by the 

K-Means algorithm and does not indicate an ordered 

ranking of average wave height. Therefore, even 

though Cluster 1 has the highest hs value, its position 

is not placed at the top. The numbering simply serves 

as a group identifier. Furthermore, the clustering 

results in Table 3 differ from the wave classification 

in Table 2, which is based on the SWH thresholds 

(calm, low, moderate, high). Thus, clustering reveals 

the natural patterns of data without predefined 

categories, whereas classification uses official 

categorical standards. 

Moreover, the clustering results can be 

interpreted within the context of risk mitigation. 

Cluster 0, representing calm sea conditions, can be 

categorized as “Safe”; Cluster 1, with transitional 

characteristics, as “Alert”; and Cluster 2, with 

relatively higher wave height and current speed, as 

“Hazardous.” Hence, this table not only illustrates the 

statistical separation of data patterns but also provides 

practical relevance in supporting an early warning 

system for the Semarang–Demak coastal waters. The 

observed pattern of ‘calm → transition → higher 

energy,’ emerging from hs, wave period, and current 

variables, aligns with prior evidence that K-Means 

can effectively identify representative annual sea 

conditions for coastal prediction and risk 

management purposes. 

In a previous study by Erutjhahjo and Supriyanto 

(2025)[1], SLR and SWH in the northern coast of 

Semarang-Demak were predicted without creating 

SWH clusters, thus leaving the hazardous SWH 

conditions for maritime navigation and coastal 

hydrometeorological disasters unidentified. This 

study determines SWH clusters, including extreme 

heights, to enable mitigation of maritime navigation 

risks and coastal hydrometeorological disasters. 

3.3 Evaluation and Recommendations 

Based on the results of data analysis and testing, 

this study produced the following assessments: 

a.   After collecting daily weather data from 2019–

2024, the main influencing variables were 

identified as follows: significant wave height 

(hs): 100%, wave period (t01): 100%, and wind 

direction (dir): approximately 99%. Meanwhile, 

other variables such as ocean current velocity 

(cm/s): ~20%, and surface air pressure (hPa): 

<1%, showed minor influence. 

b. During the data cleansing and normalization 

process, some missing values were detected. 

However, during the testing phase, several 

outliers were still observed, although their effect 

was not significant. This was particularly evident 

during the PCA test, which suggests that the 

presence of outliers might be due to human input 

errors during manual data entry by weather 

station operators. 

c. Although the clustering result with K = 3 produced 

good performance based on the Silhouette Score 

and Davies–Bouldin Index (DBI), further testing 

with K = 4 is recommended. This would help 

determine whether the clustering quality 

improves, and whether the data distribution 

becomes more consistent with the linearity of 

wave classification based on WMO (World 

Meteorological Organization) standards. 

d. The research would be more comprehensive if 

extended to include prediction and classification 

analyses, allowing for a clearer understanding of 

inter-variable relationships and model 

consistency. 

Based on the testing and evaluation results, 

several recommendations are proposed in this study 

as follows: 

a. Further clustering tests should be conducted 

using alternative algorithms, directly applying 

the main influencing variables, namely 

significant wave height (hs), wave period (t01), 

and wind direction (dir). 

b. During the data cleansing and normalization 

process, invalid or inconsistent data should be 

carefully reviewed and, if necessary, verified 

with the original weather data operators before 

removal or correction. This verification process 

is essential to reduce potential outliers during 

PCA (Principal Component Analysis) and 

clustering tests. 

c. Additional testing using different values of K, 

such as K = 4, is recommended to confirm 

whether better clustering performance can be 

achieved and to ensure higher accuracy in 

representing oceanographic patterns. 

d. A more comprehensive study combining 

prediction and classification analyses on the 

same dataset and study area would provide 

deeper insights and more complete information 

for marine navigation risk mitigation and coastal 

management, particularly for the Semarang–

Demak coastal region. 

4. CONCLUSION 

This study successfully developed a clustering 

model for sea waves in the Semarang–Demak coastal 

waters using the K-Means algorithm. The clustering 
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results show that Significant Wave Height (SWH) 

can be categorized into three primary clusters: calm, 

moderate, and high sea waves. Cluster 0 represents 

calm sea conditions with low SWH, Cluster 1 

encompasses moderate to high waves, and Cluster 2 

represents extreme wave conditions. The evaluation 

metrics—Silhouette Score (0.725) and DBI (0.425), 

indicate that clustering with K = 3 provides well-

separated and representative clusters. 

The findings of this research make a significant 

contribution to understanding the dynamics of sea 

waves in the Semarang–Demak region, providing 

valuable insights for disaster mitigation, coastal 

management planning, and maritime navigation 

safety. The application of PCA for dimensionality 

reduction prior to clustering also proved effective in 

enhancing the separability of the data. 

Although the developed model demonstrates 

strong performance, further improvement is 

recommended through the application of alternative 

clustering algorithms and enhanced data quality 

verification. Future studies integrating other 

clustering methods, along with predictive and 

classification analyses, will offer a more 

comprehensive understanding and support more 

informed decision-making for coastal risk mitigation 

and marine disaster management in the Semarang–

Demak coastal region. 
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