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Abstract 

 

Short term load forecasting is a crucial process in ensuring optimal and reliable operation of electric power system 

which is critical in sustaining highly technological economies. Various approaches and methods have been 

implemented in forecasting electricity load of a system including statistical methods such as auto regression and 

machine learning methods such as support vector machine and also deep learning methodology as recurrent 

neural network methodology which gain popularity in electricity load forecasting nowadays. In this paper, 

Transformer as a deep learning methodology is used to forecast hourly electricity load in Bali Area. Three 

lookback days scenario and ten days of forecast period are used to evaluate the performance of the Transformer 

models. This study suggest that although higher lookback days will give more complicated model due to increasing 

number of parameters involved, the best overall prediction performance are given by transformer model with 1 

day of lookback period. The three model in this study also tend to have low prediction performance in predicting 

electricity load for weekend or holiday period. Future study using multivariate transformer model is suggested to 

improve the prediction performance of the transformer model in predicting electricity load in Bali area. 
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1. PENDAHULUAN  

Electricity is critical to sustaining highly 

technologically advanced industrialization in all 

economies [1], [2]. In this modern era, electricity is 

essential to nearly all activities. As the years' pass, the 

global demand and consumption of electrical energy 

increase [3], but electrical energy generation, 

transmission, and distribution remain complex and 

expensive. Consequently, good grid management is 

crucial for reducing the cost of energy production and 

increasing the generation capacity to satisfy the rising 

demand for electric energy [4]. Consequently, 

effective grid management necessitates good load 

demand planning, an adequate maintenance schedule 

for generating, transmission, and distribution lines, 

and efficient load distribution via supply lines. 

Therefore, effective load forecasting will go a long 

way toward optimizing the planning process in the 

power generation industries [4], [5]. 

Numerous approaches and algorithms have been 

implemented for electrical load forecasting. In general, 

these approaches can be categorized into two primary 

groups, i.e., (i) statistical models and (ii) machine 

learning models [6], [7]. There are several popular 

statistical models that were used for electricity load 

forecasting, such as seasonal autoregressive [8], 

threshold autoregressive [9], ARIMA [10], SARIMA 

[11], etc. In contrast to the extensive use of statistical 

approaches, machine learning (ML) techniques have 

gained favor due to their efficacy, precision, and 

adaptability. In recent years, the availability of data (as 

a result of digitization) and the affordability of 

essential computer resources have made machine 

learning approaches an unavoidable option in this 

respect [12]. 

There are several ML techniques that has been 

implemented for electricity load forecasting. In 2010, 

Li et al. utilized several ML techniques to forecast 

annual residential energy demand in China. They 

found that support vector machine (SVM) model gives 

the best performance compared to other ML methods 

[13]. In 2013, Jain et al. also applied SVM techniques 

to investigate the temporal and spatial effects on the 

model performance. The results show the capability of 

the model in forecasting the energy demand of 

residential floors on an hourly scale [14]. In 2018, 

Ruiz-Abellón et al. predict the multivariate short-term 

electrical consumption by using regression tree 

methods. By adding calendar variables and 

temperatures, they obtained the best results from 

Random Forest method with short time of 

computational process [15]. Also, ML techniques are 

popular for prediction tasks in other fields [16].  

Recently, deep learning (DL), as a sub-technique 

of ML, was frequently used for various energy-

forecasting tasks because of its ability to model 

nonlinearity [17]. Singh et al. identified three primary 

characteristics that influenced the emergence of deep 

learning algorithms for short-term load forecasting 
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tasks, which are its adaptability to be scaled on 

massive data, its capacity to do unsupervised feature 

learning, and its tendency for generalization [18]. 

Several review studies reported that among DL 

techniques, recurrent neural network (RNN) based 

methods give better performance than other deep 

algorithms [19]–[21]. Unfortunately, there are several 

drawbacks of RNN-based methods, such as the 

problem of gradient disappearance during time series 

processing [22] and the difficulty of processing in 

parallel mode, leading to time consumption [23]. To 

solve those drawbacks, the transformer method has 

been proposed by Vaswani et al. This method enables 

a parallel process for sequence type of input [24]. 

However, despite its advantage, implementing the 

transformer in electricity load forecasting is still very 

rare. 

This study aim to implement time series-based 

Transformer method in electricity load forecasting. 

We used per hour electricity load data in Bali, 

Indonesia, for period of March 2020 until August 

2021. The transformer prediction model was 

developed by varying the transformer block and head 

attention number. The performance of the model was 

evaluated by calculating several validation parameters, 

such as correlation coefficient (CC), root mean square 

of error (RMSE), and mean absolute percentage of 

error (MAPE). 

2. MATERIAL AND METHODS 

2.1. Data Set 

The data set used in this study is per hour 

electricity load data in Bali, Indonesia, for period of 

March 2020 until August 2021, as presented in Figure 

1. We splitted the data set into train, validation and test 

set with splitting scheme was illustrated in Figure 2. 

To develop the forecasting model, we utilized three 

look back values, i.e. 1, 3 and 7 days, and evaluate the 

contribution of the look back on the model 

performance. Here, the look back data was used as 

features to predict the electricity load of the next time. 

Hence, we tranformed the time series data of 

electricity load into set of feature and target. 

 

 
Figure 1. Time series plotting of electricity load 

 

 
Figure 2. The scheme of data set splitting into train, validation, and 

test set 

2.2. Transformer Model 

The transformer model [24] was initially 

introduced for machine translation, but due to its great 

performance, it was rapidly implemented into other 

fields, including image generation, audio, text 

summarization, and music. The transformer does not 

employ recurrent or convolution but instead models 

with an attention module. The transformer utilizes the 

encoder-decoder technique. The input is initially 

entered into the encoder, and the output is then 

generated based on the encoded input and the prior 

outputs in the decoder. 

Encoders are stacked in the part of the encoder. 

The number of encoders in a stack is a free parameter, 

which is typically six layers. A stack of decoders equal 

to the number of levels in the encoder is utilized in the 

decoder. Each encoding layer has its own parameters; 

these layers do not share a common weight. The 

transformer, unlike recurrent networks, has no 

difficulty with vanishing gradient and can reach any 

point in the past regardless of the distance between 

words. This technique permits the transformer to 

identify long-term dependencies. In addition, unlike 

recurrent networks, the transformer does not require 

sequential computing and can operate in complete 

parallel at high rates. 

The vanilla Transformer [Vaswani et al., 2017] 

follows the encoder-decoder structure of most of the 

competitive neural sequence models. Each encoder 

and decoder consists of several identical building 

blocks. Each encoder block consists of a multi-head 

self-attention module and a position-wise feed-

forward network (FFN), while each decoder block is 

put between the multi-head self-attention module and 

the position-wise feed-forward network (FFN). 

The self-attention module applied by using the 

scale dot-product attention with Query-Key-Value 

(QKV) as formulated as: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q, K, V) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
QKT

√𝐷𝐾
)V                   (1) 

 

where 𝐷𝑘  represent the key dimension. Transformer 

employs multi-head attention (MHA) with H distinct 
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sets of learned projections instead of single attention 

function formulated as follows: 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q, K, V) = 

= 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝐻)W𝑂                      (2) 

 

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q𝑾𝒊
𝑸

, K𝑾𝒊
𝑲, V𝑾𝒊

𝑽) . 

Then, MHA is linked to feed-forward network that is 

fully connected module as follows: 

 

𝐹𝐹𝑁(H′) = 𝑅𝑒𝐿𝑈(H'W1 + b1)W2 + b2          (3) 

 

where H' means the output from the previous layer, 

W1, W2, b
1
, b

2
 are trainable parameters. 

 

In this study, the transformer model was 

developed by optimizing two architecture parameters, 

transformer block, and head attention number. Both 

parameters were considered hyperparameters that 

were optimized by using a manual tuning approach. A 

total of six transformer models were developed that 

were derived from the combination of two transformer 

block values (1 and 2) and three head number values 

(1, 2, and 3). Besides both parameters, other 

hyperparameters of the transformer model were set to 

fix, as presented in Table 1. 

 
Table 1. The Fix Hyperparameter of Transformer Model 

Hyperparameter Value 

Head size 128 

Convolution layer (FF) 4 
Act. func. in FF relu 

Hidden node in FC 128 

Act. func. in FC relu 
Learning rate 1 x 10-4 

Epoch 200 

Patience callback 10 

2.3. Model Validation 

To validate the model, we used Transformer 

model to predict maximum 10 days of the test set. 

However, the prediction did not performed in one 

batch using all the test. Instead, we conducted the 

prediction hour by hour by utilizing the predicted 

value for the next hour prediction. Hence, we consider 

the accumulation of error to investigate the ability of 

the model to overcome the issue. Also, this approach 

represent the prediction power of the model and point 

out the limitation of model applicability in the term of 

time series data. Validation parameters that were 

calculated to evaluate the model performance consists 

of correlation coefficient (CC), root mean square of 

error (RMSE), and mean absolute percentage of error 

(MAPE). The calculation of those parameters are 

formulated as follows: 

 

CC =  
∑ (𝑋𝑡

𝑎−𝑋𝑎̅̅ ̅̅ )(𝑋𝑡
𝑝

−𝑋𝑝̅̅ ̅̅ )𝑁
𝑡=1

√[∑ (𝑋𝑡
𝑎−𝑋𝑎̅̅ ̅̅ )

2𝑁
𝑡=1 ][∑ (𝑋𝑡

𝑝
−𝑋𝑝̅̅ ̅̅ )

2𝑁
𝑡=1 ]

          (4) 

 

RMSE = √
∑ (𝑋𝑡

𝑎−𝑋𝑡
𝑝

)𝑁
𝑡=1

𝑁
            (5) 

 

MAPE =  
100%

𝑁
∑ |

𝑋𝑡
𝑎−𝑋𝑡

𝑝

𝑋𝑡
𝑎 |𝑁

𝑡=1            (6) 

 

where 𝑋𝑡
𝑎  represent actual electricity load at time 𝑡 , 

𝑋𝑎̅̅ ̅̅  represent the average value of actual electricity 

load, 𝑋𝑡
𝑝
 represent predicted electricity load at time 𝑡, 

𝑋𝑝̅̅ ̅̅  represent the average value of predicted electricity 

load, and N is total number of data. 

3. RESULT AND DISCUSSIONS 

3.1. Model Fitting 

Table 2 shows the model architecture that gives 

the best performance regarding the correlation 

coefficient, RMSE, and MAPE for different lookback 

periods. From Table 2, we can see that the higher the 

number of lookbacks, the more complicated the model 

is regarding the number of transformer blocks and 

head number. This is also aligned with the parameter 

number involved in the model, where the higher the 

lookback period, the more parameters are involved. 

In the model fitting process, we monitor the value 

of loss-value for the train and validation dataset. From 

Figure 3, we can see how the loss value for the train 

and validation dataset progress, starting very high 

value in the first stage of model fitting and getting 

lower as the model fitting continues. We can also see 

how the loss-value for test and validation datasets are 

close to each other at the end of the model-fitting 

process, which indicates a good model-fitting process. 

In addition, although the epoch number set in the 

model fitting is 200, the model fitting process stopped 

at the epoch number of around 160 due to the patience 

callback parameter, which is set at a value of 10. The 

resulting time series plot of the electricity load for 

training, validation, and test dataset is given in Figure 

4.  

3.2. Model Evaluation 

After the best model for each lookback is 

obtained, the model is then tested against the test 

dataset to evaluate how each model performs for each 

lookback and prediction length. Figure 5 shows the 

plot of electricity load forecasting using the 

Transformer model for ten day forecasting period for 

each lookback number. As we can see from Figure 5, 

qualitatively, we can see that although all three 

lookback setting performs poorly for the first 

forecasting day, lookback day 3 gives the best fitting 

performance for the ten days prediction period. 

Lookback 1, in general, fails to predict the electricity 

load at the high-value region, while on the other hand, 

lookback 3 fails to predict the electricity load at the 

lower-value region. Lookback 7, on the other hand, 

fails to predict the electricity load both in the higher 

and lower load region. Upon further evaluation, we 
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can see that all electricity load forecasting models fail 

to predict electricity load for the weekend or holiday 

period. This might be caused by the missing 

information in the feature regarding the day position in 

a week. 
Table 2. Model Architecture 

Look 

back 

Transformer 

block 

Head 

number 

Val 

score 

Parameter 

number 

1 2 1 0.007 5,139 

3 1 2 0.006 11,274 
7 2 3 0.007 27,155 

 
 

Figure 3. Learning curve of the best transformer architecture for 

look back 1 day 

 

 
Figure 4. Time series plot of electricity load forecasting for transformer with look back 1 day  

 

Table 3 provides the quantitative performance for 

all three lookback models for ten days of the prediction 

period. From Table 3, we can see that all three 

lookback models give poor prediction performance for 

the first prediction day in terms of RMSE and MAPE 

value while still giving a good correlation coefficient 

value. Even though it is expected to have high fitting 

performance for a prediction length of one day, high 

vertical error for the first day for all three lookback day 

models indicates that the model performs poorly in 

predicting electrical model for weekend/holiday 

periods due to lower than average electricity load at 

those time period. This indication is also emphasized 

by low prediction performance for all three models for 

the seventh and eighth days of the prediction period, 

which also includes the weekend period (Saturday and 

Sunday). Overall, the model for lookback day 1 gives 

the best performance in terms of CC, RMSE, and 

MAPE, followed by the lookback 3 models, especially 

for prediction lengths of 3 and 5 days. Lookback 7 

model gives the lowest performance of all three 

models. This may suggest that in electricity load 

forecasting, a more complicated model and a higher 

number of parameters cannot guarantee a better 

prediction performance. 

 

 
Figure 5. The comparison of time series plot of electricity load forecasting  

 Table 3. Quantitative Performance of Transformer Models  
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Look back 
Prediction Length 

1 3 5 10 

CC 

1 0.969 0.971 0.982 0.965 

3 0.983 0.972 0.971 0.957 

7 0.959 0.907 0.934 0.903 

RMSE 

1 26.235 17.642 17.532 23.536 

3 23.912 19.086 18.979 20.360 

7 38.473 28.021 27.742 27.655 

MAPE 

1 3.768 2.330 2.560 3.016 

3 3.711 2.897 2.898 3.112 

7 5.847 4.304 4.365 4.141 

4. CONCLUSION 

Machine learning methodology, such as support 

vector machine, and deep learning methodology, such 

as recurrent neural network, has been widely 

implemented in short-term electricity load forecasting. 

In this study, the Transformer methodology, as one of 

the deep learning methods, is used to forecast hourly 

electricity load in the Bali area. This study uses three 

lookback scenarios and ten days of prediction time to 

evaluate the performance of the transformer models. 

This study found that a higher lookback period will 

require a more complex transformer model 

architecture due to the increasing number of 

parameters involved. However, the complexity of the 

model does not necessarily increase the performance 

of electricity load prediction. This study found that the 

transformer model with one day of lookback period 

gives the best overall forecasting performance while, 

on the contrary, the transformer model with 7 days of 

lookback period gives the worst overall forecasting 

performance. A future study using a multivariate 

instead of a univariate transformer model is suggested 

to improve the prediction accuracy of the transformer 

model in electricity load forecasting. 
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