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Abstract 

 

A large number of data packet records of network traffic can be used to evaluate the quality of a network and to 

analyze the occurrence of anomalies in the network, both related to network security and performance. Based on 

the data obtained, the event of irregularities in computer networks can not be explicitly detected on which traffic 

packets. Meanwhile, monitoring network traffic packets manually will require a lot of time and resources, making 

it difficult to see potential anomaly events more precisely. This study analyzes network packet traffic data through 

several general steps, including the process of capturing network packet traffic data, identifying security 

vulnerabilities by searching for anomalous traffic packets using an outlier detection approach, validating the results 

of outlier detection with expert information, and then conducting a classification and evaluation process. In the 

outlier detection process using the Isolation Forest algorithm, the results showed 1,643 records (4.86%) classified 

as outlier types, while 32,098 (95.13%) classified as inliers. Subsequently, validating and filtering the expert 

attributes containing expert information is conducted. The outlier detection results were classified using five 

comparison algorithms: Random Forest Classifier, Support Vector Machine, Decision Tree Classifier, K-Nearest 

Neighbor, and Bernoulli Naive Bayes. The Random Forest algorithm has the highest score for accuracy, macro 

average precision, and macro average f1-score, namely 0.9962067330488383, 0.78, and 0.82.  
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1. INTRODUCTION 

Computer networks are essential for preserving an 

organization business processes's continuity, 

particularly with the fast-paced development of the 

internet and interconnecting technologies. To ensure 

the availability of computer network services, one 

must take steps to eliminate threats in network traffic. 

Network traffic refers to the data present on the 

network when it is active, with information being 

exchanged in the form of service resource access 

requests and provider responses [1]. Threats to 

network traffic can come from several sources, such as 

malicious activities utilizing network services, 

network overload, device damage, and the leak of 

network parameters such as protocols and ports [1]. To 

address these threats, it is necessary to monitor 

network traffic using a monitoring system to capture, 

analyze, and determine whether a packet is normal or 

an anomaly. Traffic anomalies in the network are 

defined as events or operations that deviate from the 

normal behavior of the network [1]. 

Based on network monitoring data from October 

2021, 1,075 anomalous occurrences were found in 

computer networks involving 187 devices, but the 

specific traffic packets involved have not been 

detected. To carry out further analysis and 

investigation, it is necessary to gather more specific 

information about the anomalous traffic packets. This 

is crucial for investigating security and network 

performance issues related to these anomalies. 

However, manual monitoring of traffic packets would 

require a significant amount of time and resources, 

making it difficult to detect potential anomalous events 

in network traffic packets with specificity. 

There are two commonly used approaches in 

monitoring systems for detecting threats in a network: 

Misuse detection and Anomaly-based detection [2]. 

Misuse detection systems, also known as Signature-

based detection, use a recognized pattern or a database 
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of suspect activities and operations that may be 

dangerous. However, this approach has limitations, as 

it can only detect intrusions whose attack patterns have 

already been identified and stored. New and 

unrecognized attack patterns are less detectable. 

Anomaly-based detection aims to recognize new 

attack patterns, assuming that every intrusion activity 

is an anomaly in the network, and builds a normal 

activity profile [1]. Outlier Detection is a technique 

used to detect network traffic anomalies, where the 

assumption is that an anomaly is an unusual 

occurrence in the network [1]. This research focuses 

on using data mining methods to detect potential 

anomalies in network traffic packets and classify them 

more accurately. 

In the related previous research [3], it was found 

that the Isolation Forest algorithm had the highest 

accuracy and F1 score, specifically at a flow-timeout 

threshold of 120s, with values of 98% and 87% 

respectively. However, the True Positives (TP) rate 

was not very high, reaching only 77%. This means that 

the correct classification of successfully detected 

malicious flows is not very high. In addition, the 

research conducted by [4] utilized Autoencoder (AE) 

and Isolation Forest (IF) for the binary classification 

of incoming traffic on fog devices, aiming to make 

real-time decisions on attacks and normal traffic. The 

study achieved a high accuracy rate of 95.4%. 

However, it should be noted that the classification 

process is conducted in real time without validation 

through expert information, which could potentially 

enhance the accuracy of detection. Therefore, in this 

study, further development was conducted using a 

different dataset and by incorporating expert 

information validation methods during outlier 

detection. This ensures that outlier detection results are 

not immediately labeled as anomalies. Subsequently, 

the detected anomalies were classified using the 

Random Forest algorithm, resulting in an accuracy of 

99%. Each label also had its own accuracy, precision, 

recall, and F1 score values. 

The data used in this study was obtained from 

network traffic packets captured using Wireshark. The 

data mining method with the Outlier Detection 

algorithm approach uses the Isolation Forest 

algorithm. Subsequently, the detected anomalies are 

classified using a data mining classification algorithm, 

enabling the development of a classification model for 

detecting packet traffic anomalies on the network. This 

allows the models and prototypes developed to be 

utilized for in-depth analysis of network traffic packet 

data, thereby detecting potential anomalous 

occurrences on the network. 

2. RESEARCH METHOD 

This research was conducted to determine the 

most appropriate data mining model for detecting 

potential network anomalies based on network traffic 

packet datasets. This is because there are difficulties in 

conducting an in-depth analysis of packet capture 

network traffic, and it is challenging to manually 

detect anomalies with a large number of traffic 

packets. In related studies, the recommended data 

mining classification model for detecting network 

anomalies in network traffic packet datasets is not 

explicitly explained. In the case of commonly used 

data mining classification methods for detecting 

anomalies in public NSL-KDD datasets, there are 

several research references related to the classification 

of Intrusion Detection System (IDS) data. One such 

study, conducted by [5], compares the Naive Bayes 

(NB), Random Tree, Random Forest (RanFor), and 

J48 methods for classification. The results showed 

that, in comparison to other algorithms, the RF 

approach offered a relatively higher level of accuracy 

[5]. This study is relevant to the review as research [6] 

and [4] have similarities, using the Isolation Forest 

algorithm to detect outliers or anomalies in fog 

computing devices and network management systems. 

There is also relevance to other research related to 

network traffic capture data, such as research [7] that 

compares the Decision Tree (DT), Support Vector 

Machine (SVM), K-Nearest Neighbor (K-NN), and 

Convolutional Neural Network (CNN) methods on 

network packet capture data (using the KDD NSL 

dataset) to detect Distributed Denial of Service attacks. 

Previous research related to outlier detection can 

be seen in [8], which compares outlier detection in two 

datasets of hospital drug use through a comparison 

between the K-Means, LOF, and OC-SVM 

algorithms. Another example can be seen in [9], where 

the researchers utilized the K-Means clustering 

algorithm and neural networks to detect outliers in 

social media network analysis. The Isolation Forest 

algorithm was chosen for outlier detection in this study 

due to its ability to eliminate computational costs by 

not relying on distance or density measures. This 

advantage makes the Isolation Forest algorithm a 

suitable choice for detecting anomalies in large and 

complex data sets [4]. The Isolation Forest algorithm 

adopts a unique approach to anomaly detection by 

isolating instances without relying on distance or 

density, capitalizing on two key properties of 

anomalies: they are a minority of instances and they 

have attribute values that significantly differ from 

those of normal examples, or, in other words, 

anomalies are "few and different" [10]. 

Previous studies have used the Isolation Forest 

algorithm in various ways. In [4], the Autoencoder 

(AE) and the Isolation Forest (IF) algorithms were 

used for binary classification of incoming traffic on 

fog devices, where the system had to make real-time 

decisions regarding attacks and normal traffic. 

Another study [6] employed statistical methods to 

extract features and utilized the Isolation Forest 

algorithm to perform two classifications, resulting in 

fast and accurate anomaly detection across various 

types of data. Other research related to data mining 

classification conducted by [5], [11], [12], [13], [14], 

[15], [16], [17], [18], [19], and [20] have used 
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algorithms such as SVM, K-NN, General Regression 

Neural Network, RanFor, C4.5, NB, and analysis of 

visitor logs with average errors. The research utilizes 

stages of method the Cross-Industry Standard Process 

for Data Mining (CRISP-DM), as outlined in [21], as 

a guide for incorporating data mining into problem-

solving strategies in businesses or research units. In 

general, the steps taken in this research include data 

collection and data preparation, outlier detection and 

validation, classification and evaluation, as well as 

prototype design, as depicted in Figure 1. 

 
Figure 1 Data Analysis Diagram of Potential Anomaly Detection 

Modeling 

 

The explanation for Figure 1 is as follows, 

depicting the sequential stages of the method: Data 

Collection and Data Preparation, Outlier Detection 

and Validation, Classification and Evaluation, and 

Prototype Design. 

2.1 Data Collection and Data Preparation 

The data collection method in this study involves 

capturing network traffic packets using Wireshark 

tools, which are open-source tools for packet 

capturing. Wireshark provides more in-depth 

information and expert insights to assist in the process 

of detecting outliers and classifying potential network 

traffic packet anomalies. 

Based on the packet capture data from the 

network, the data is prepared for processing in the next 

step. The data preparation process involves setting the 

columns that appear in the Wireshark application, 

saving the network traffic packet data file in CSV 

format, selecting attributes (columns) for the outlier 

detection process, and undergoing several other data 

preparation steps. 

2.2 Outlier Detection and Validation 

Outlier analysis is performed to detect potential 

anomalies in network traffic packets using the 

Isolation Forest method. This method separates 

entities that are outliers (few and different) from 

normal entities by randomly selecting two features 

from the network traffic packet dataset and comparing 

the data with the range of values of the selected 

features to isolate them. 

After performing the outlier detection, the results 

were validated by examining the expert information. 

The expert information includes "Note", "Chat", 

"Warning", and "Error" information, which provides 

initial guidance for the investigation. Expert 

information serves as a starting point to give a clearer 

picture of unusual or significant network behavior. It's 

essential to remember though, that the existence of 

expert information does not inevitably signify a 

problem and the absence of expert information does 

not always mean everything is functioning normally 

[22]. To get a more specific number of outliers, the 

results of the outlier detection were further analyzed 

by filtering the outliers based on the expert 

information in the form of "Warning" and "Error". 

These two statements indicate serious warnings and 

problems, making the data more likely to be 

anomalous and a priority for further investigation. 

2.3 Classification and Evalution 

After obtaining the new labels, including normal 

data labels/inliers, outliers, errors, and warnings & 

outliers, the next step is to perform data mining 

classification to obtain a classification model for 

potentially anomalous network traffic packets. The 

classification process was performed using five 

different algorithms: Random Forest, Support Vector 

Machine, Decision Tree, K-Nearest Neighbor, and 

Bernoulli Naive Bayes. An evaluation was then 

conducted by comparing the scores of accuracy, 

precision, recall, and F1-score. 

The Random Forest algorithm has the highest 

accuracy score compared to other algorithms, so the 

implementation of the Random Forest algorithm is 

broken down into the following algorithm stages: 

a. Bootstrap dataset creation 

An estimation technique known as bootstrap is 

used to produce the predictions, by resampling 

the data set and selecting a random sample from 

the initial data set using a bagging process. 

b. Making a Decision Tree (Decision tree) 

By using the bootstrap dataset produced in the 

preceding step, construct a decision tree. 

Additionally, when creating it, just a portion of 

the dataset is taken into account, with a subspace 

of random variables being chosen as root nodes 

at each stage. Then repeat the same process for 

each subsequent branch node, by randomly 

selecting several variables as candidate branch 

nodes. 

c. Return to the initial step and repeat 

Each decision tree in Random Forest categorizes 

output classes according to the specific predictor 

factors that were employed. The output class is 

determined by which class receives the most 

votes. 

After obtaining the classification results with the 

highest-scoring algorithm, the classification model is 

stored in the Pickle format. A simple application is 

then developed using the Django framework for 



Setiawan, K and Wibowo, A., Data Mining Implementation …   82 

classifying potentially anomalous network traffic 

packet data. 

2.4 Prototype Design 

The development of the application uses the 

Pickle model that was generated and stored in the 

modeling stage, using the Python programming 

language with the Django frame in the development of 

application prototype. Thus, if there is new network 

traffic packet data or additional data, modeling can be 

carried out again to produce an updated model, which 

is expected to result in more accurate classification. 
 

3. RESULT AND DISCUSSION 

Based on the network traffic packet capture data 

obtained, there are 33,741 traffic packet records 

captured with attributes consisting of number, time 

(time in seconds), source (source IP address), 

destination (destination IP address), protocol (network 

protocol used). used), length (packet length in bytes), 

and info (explanation of information). To get more 

complete data, a simple configuration is performed on 

the traffic packet capture results, in columns 

preferences to display other information, namely 

source port, destination port, stream index, TCP 

segment. len (tcp segment length), sequence number 

(tcp sequence), sequence number (raw), next sequence 

number, acknowledgment number, acknowledgment 

number (raw), header length (tcp header length), flags 

(tcp flags), and expert (expert information in the form 

of hints according to severity level). After that, the 

attributes that will be used for the data mining process 

are selected, namely: protocol, length, source port, 

destination port, TCP segment len, sequence number, 

acknowledgment number, header length, flags, and 

expert. These data attributes have the characteristics of 

different data types, categorical data types are found in 

the attributes: protocol, flags, and expert, while 

numeric data types are found in the attributes: length, 

source port, destination port, TCP segment len, 

sequence number, acknowledgment number, and 

header length. 

It was found that the most used Protocol Attribute 

was TCP Protocol with 18,594 instances. TCP 

Protocol is a protocol used for exchanging information 

between devices on the network. The initial data 

contained records with null or NaN (Not a Number) 

values, which required several data preparation steps 

before the first data mining process using the Isolation 

Forest algorithm could be performed. The first step 

involved transforming the null or NaN data. In 

addition, categorical data, such as protocol, flags, and 

expert, were transformed into numeric data.  

3.1 Outlier Detection and Validation 

The first modeling implementation to detect 

outliers from network traffic packet data uses the 

Isolation Forest algorithm. The steps taken are as 

follows: 

a. Determine the x variable which consists of the 

protocol, length, source port, destination port, tcp 

segment length, sequence number, 

acknowledgment number, header length, and 

flags attributes, and the y variable is the expert 

attribute. 

b. Calculates the isolation forest score for each 

record. 

c. Mark a score with a minus (-) value with an 

anomaly label -1 and vice versa with a value of 

1. Then each label -1 is added with outliers and 

label 1 is added with inliers. Graphical display of 

the number of outliers and inliers data 

frequencies can be seen in the following figure. 

 
Figure 2 Histogram Data Outliers and Inliers 

In Figure 2 it is explained that based on these 

results, 1,643 records (4.86%) were found to be 

outliers, while inliers were 32,098 records (95.13%). 

A check is made on the attribute of the expert which 

contains expert information which is the starting point 

of the investigation, to give a better picture of unusual 

or important network behavior, but the presence of 

expert information does not always indicate a problem 

and there is no expert information doesn't always mean 

all is well. The expert information contained in the 

traffic packet data capture consists of 4,231 records 

labeled "Note", 1,538 "Warning", 1,051 "Chat", and 

15 "Error". The description "Chat" is information 

about ordinary workflows, "Note" is a note of 

important events, "Warn" is a warning when an 

application gives an odd error code, such as one 

indicating a connection issue, and "Error" is a serious 

problem, such as a defective package ( malformed). So 

that the outlier detection data is filtered which has 

expert information in the form of "Warn" and "Error" 

and with the description "outlier", to label the potential 

anomaly data.  
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Figure 3 The amount of data labeled "inliers", "outliers", "warning 

& outlier", and "Error" 

 

In Figure 3 it is explained that the number of 

potential anomaly data labels consists of 89 records 

with the description "warning & outlier", 15 "error", 

1,554 "outliers", and 32,083 "inliers". 

3.2 Classification and Evalution 

Based on the results of the outliers detection, 

classification was carried out using 5 algorithms as a 

comparison, where the RanFor algorithm had the 

highest accuracy score. In Table 1 it is explained that 

comparison of the accuracy scores of each algorithm 

in the classification process can be seen as follows. 

Table 1 comparison of classification algorithm accuracy scores 
 

No. Algorithms Accuracy Score 

1. Random Forest 0,9962067330488383 
2. Support Vector Machine 0,9467757230915126 

3. Decision Tree 0,9958511142721669 

4. K-Nearest Neighbor 0,9770033191085823 
5. Bernoulli Naive Bayes 0,9468942626837363 

3.2.1 Classification process 

The classification process in the Random Forest 

algorithm can be explained as follows, 

a. Bootstrap dataset creation 

Bootstrapping is a technique that involves 

picking random samples from the original data set 

using a bagging process in order to generate 

predictions on data sets. 

• Defined index to divide the dataset into training 

data and testing data 

BEGIN 

NUMERIC population, k, test_indices, ts_d, tn_d 

population = data index 

k = test_size 

test_indices = random sampling of the 

population with size k 

ts_d = data selection in test_indices from row to 

row and from column to column 

tn_d = remaining data other than ts_d 

END 

• Also defined is the bootstrapping process to get 

a random sample and replace it 

BEGIN 

NUMERIC tn_d, bootstrap_indices, n_btp, 

df_bootstrap 

bootstrap_indices = random sampling on tn_d by 

returning an array and filling it with random 

integers in low (0) to high (length of tn_d) 

intervals 

df_bootstraped = selection of data that is 

bootstrap_indices in tn_d 

END 

• Bootstrapping process 

b. Conduct training dataset on a number of random 

features 

• Define a function to get the split potential of the 

training data 

BEGIN 

NUMERIC data, random_subspace, n_columns, 

columns_indices, k, unique_values, 

potential_splits 

n_columns = number of columns in the data 

column_indices = value data in the range of all 

features except labels/classes (n_columns – 1) 

IF random_subspace & random_subspace <= 

number of column_indices THEN 

column_indices = random sampling on the 

column_indices population with size k = 

random_subspace 

FOR column_indices 

unique_values = defines the unique elements of 

the data 

the potential_splits output of column_index is 

unique_values 

END FOR 

END 
• Do split data training with random subspace 

• The Random Forest algorithm is defined, with 

the parameter tn_d being the dataset, n_tri 

being the number of trees, n_btp being the size 

of the bootstrap dataset, n_fs being the number 

of features to be trained, and dt_md is the 

maximum tree depth 

BEGIN 

NUMERIC tn_d, n_tri, n_btp, n_fs, dt_md 

n_tri = number of trees 

n_btp = bootstrap dataset size 

n_fs = number of features to be trained 

dt_md = maximum tree depth 

FOR i on range n_tri 

d_btpd = selection of data which is 

bootstrap_indices in tn_d with bootstrap dataset 

size n 

tree = forming a tree using the d_tri algorithm, 

with d_btpd data selection, dt_md tree depth, and 

random_subspace a number of features trained 

output forest = adds the tree that is formed in the 

list that contains all trees 

END FOR 

END 
• Training is carried out using the Random Forest 

algorithm 

BEGIN 

NUMERIC tn_d, n_tri, n_btp, n_fs, dt_md, 

random_forest_algorithm 

n_tri = number of trees 

n_btp = bootstrap dataset size 

n_fs = number of features to be trained 

dt_md = maximum tree depth 

input n_tri, n_btp, n_fs, dt_md 

forest = random_forest_algorithm training 

process with dataframes tn_d, n_tri, n_btp, n_fs, 

and dt_md 

END 
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c. Perform classification with the Random Forest 

algorithm 

BEGIN 

NUMERIC ts_d, forest, df_predictions 

d_tri_predictions = sample prediction process 

FOR i in the long range of the forest 

df_predictions = process of predicting 

d_tri_predictions with ts_d and a number of tree 

forests i 

END FOR 

END 

Classification process with iterations 10 times by 

also evaluating the results of the average 

accuracy score. 

BEGIN 

NUMERIC tn_d, ts_d, n_tri, n_btp, n_fs, dt_md, 

forest, predictions, accuracy 

input n_tri, n_btp, n_fs, dt_md 

FOR i in range 10 

forest = random_forest_algorithm training 

process with dataframes tn_d, n_tri, n_btp, n_fs, 

and dt_md 

predictions = process predictions 

random_forest_predictions with ts_d and forest 

a number of i 

accuracy = calculates the accuracy of the 

prediction results for the ts_d label 

END FOR 

accuracy score output for each i and average 

accuracy 

END 

d. Evaluation of classification results 

In table 2 it is explained that based on the 

classification process, the confusion matrix is 

obtained as follows. 

Table 2 Precision, recall, f1-score, and support for the Random 

Forest algorithm 
 

 Precision Recall F1-

score 

Suppor

t 

Error 0,00 0,00 0,00 0 
Inliers 1,00 0,99 0,99 6503 

Outliers 0,76 0,90 0,82 245 
Warning & Outlier 0,00 0,00 0,00 0 

Accuracy   0,99 6748 

Macro avg 0,44 0,47 0,45 6748 
Weighted avg 0,99 0,99 0,99 6748 

 
Based on the table it is known that there are 2 

classes/labels that are not classified, this may be 

due to imbalanced data, where the labels "Error" 

and "Warning & Outlier" have a relatively small 

number of records when compared to other 

labels. 

e. Perform over sampling using the SMOTE 

method 

Oversampling is done by resampling using the 

SMOTE method, namely synthesizing new 

samples from the minority class to balance the 

dataset by resampling the minority class samples. 

After oversampling, the number of labels 

produced is illustrated in Figure 4 below. 

 
Figure 4 Comparison of the number of records on each label after 

over sampling 

Based on the oversampling results, a 

classification process is carried out with the The 

Random Forest algorithm and the confusion 

matrix are obtained as described in table 3 below. 

Table 3 Precision, recall, f1-score, and support with Random 
Forest based on oversampling 

 Precision Recall F1-score Support 

Error 0,38 0,94 0,54 78 

Inliers 0,99 0,96 0,97 6685 

Outliers 0,57 0,74 0,65 230 
Warning & Outlier 0,69 0,92 0,79 154 

Accuracy   0,95 7147 

Macro avg 0,66 0,89 0,74 7147 
Weighted avg 0,96 0,95 0,95 7147 

 

3.2.2 Characteristics of each classification label 

Based on these results, it is known that all 

classes/labels can be classified, but there are labels 

with not too high precision, recall, and f1-score, 

namely: 

a. The “Error” label has a precision score of 0.38; 

this shows that the ratio of true positive 

classification compared to the overall results 

classified as positive is less than half, so that the 

percentage of correct labels "error" of all those 

classified as "error" is quite low. Recall score 

0.94; shows the ratio of true positive classification 

compared to all data that is true positive is high, 

so that the percentage classified as "Error" 

compared to all data that is actually labeled 

"Error" is high. And the f1-score of 0.54 shows 

that precision and recall's overall mean is not 

particularly high. 

b. The "Outliers" label has a precision score of 0.57; 

this shows that the ratio of true positive 

classification compared to the overall results 

classified as positive is half, so that the percentage 

of correct labels "Outliers" of the total classified 

as "error" reaches half. In addition recall score of 

0.74, indicating the ratio of true positive 

classification compared to all data that is true 

positive is sufficient but not too high, so that the 

percentage classified as "Outliers" compared to all 

data that is actually labeled "Outliers" is sufficient 
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but not too high. And the f1-score 0.65 indicates 

that precision and recall's overall mean is not 

particularly high. 

c. The “Warning & Outlier” label has a precision 

score of 0.69; this shows that the ratio of true 

positive classification compared to the overall 

results that are classified as positive is sufficient 

but not too high, so that the percentage of correct 

labels "error" from all those classified as 

"Warning & Outlier" is sufficient but not too high. 

Recall score 0.92; shows the ratio of true positive 

classification compared to all data that is true 

positive is high, so that the percentage classified 

as "Warning & Outlier" compared to all data that 

is actually labeled "Warning & Outlier" is high. 

And the f1-score of 0.79 shows that  precision and 

recall's overall mean is not particularly high. 

 

3.3 Prototype Design 

Based on the classification results achieved by the 

Random Forest algorithm, deployment is carried out 

for building a simple application prototype to classify 

whether or not there is a potential anomaly from 

network traffic packet data, using the Random Forest 

classification model that has been stored. This simple 

application is to confirm that the model that has been 

formed can be implemented for classifying traffic 

packet data. The development of the application uses 

the Django framework. 

 
Figure 5 Classification process with the RanFor algorithm on the 

prototype 

 

The classification page describes the functions for 

uploading and selecting the dataset to be used. 

Furthermore, there is a classification function using 

the Random Forest algorithm, which produces an 

accuracy score and a confusion matrix as an 

evaluation, as illustrated in the screenshot of the 

application in figure 5. On the prediction classification 

page, new traffic packet data is entered as input for 

classification as a potential anomaly or not, using the 

Random Forest algorithm classification results model, 

illustrated in the screenshot of the application in figure 

6. 

 
Figure 6 Classification results of traffic packet data with the label 

"Outliers" 

Besides that, on the Classification Results Data 

page, users can see the history of the process of 

classifying data traffic packets that can be exported, 

illustrated in the screenshot of the application in figure 

7. 

 
Figure 7 Classification result data 

Based on the results of these studies, a data mining 

algorithm with an outlier detection approach, Isolation 

Forest algorithm, can be implemented to detect 

potential network traffic packet anomalies, and the 

RanFor algorithm can be implemented to accurately 

classify potential network traffic packet anomalies. 
 

4. CONCLUSION 

In this research, an anomaly detection and 

potential anomaly classification were carried out on 

network traffic packet data using the Isolation Forest 

algorithm for outlier detection and the Random Forest 

algorithm for classification. The Isolation Forest 

algorithm identified 1,643 records (4.86%) as outliers 

and 32,098 records (95.13%) as inliers. The results of 

the outlier detection were then checked against the 

"expert" attribute, which contains expert information 

and serves as a starting point for investigations. 

Outliers with expert information labeled as "Warn" 

and "Error" were filtered and labeled as potential 
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anomaly data. The potential anomaly data was then 

labeled as 89 records with "warning & outlier", 15 with 

"error", 1,554 as "outliers", and 32,083 as "inliers". 

The Random Forest algorithm can be applied to 

classify potential network traffic anomalies. It was 

compared to five other classification algorithms, 

namely Random Forest Classifier, Support Vector 

Machine, Decision Tree Classifier, K-Nearest 

Neighbor, and Bernoulli Naive Bayes. Out of these 

five algorithms, the Random Forest algorithm showed 

the highest accuracy, macro average Precision, and 

macro average f1-score, with accuracy value 

0.9962067330488383, precision macro average 0.78, 

and macro-average f1-score of 0.82. The macro 

average Recall was obtained from the Decision Tree 

Classifier, with a value of 0.93. Based on these 

findings, the Random Forest algorithm was chosen for 

classifying potential network traffic packet anomalies. 

The resulting classification model can categorize 

samples as "inliers", "outliers", "Error", and "warning 

& outlier". However, the "error" and "warning & 

outlier" labels have precision, recall, and f1-score 

values that are only sufficient but not high, with 

precision value 0.50, recall 1.00, and f1-score 0.67 for 

"error"; and precision value 0.64, recall 0.70, and f1-

score 0.67 for "warning & outlier". 

In this study, the potential anomalies in network 

traffic packet data have not been determined to be 

related to system performance or security. Further 

research, such as network security testing, is needed to 

confirm this. The findings of this study mainly 

categorize network traffic packet data that has the 

potential to be anomalous, labeled as "Error" and 

"Warning & Outlier." The classification model 

obtained from this study can aid in prioritizing the 

investigation process for anomalies, both related to 

performance and security. By starting with "Error" and 

"Warning & Outlier" data, the investigation can be 

further extended to "Outlier" and "Inlier" data if 

necessary. 

For further research, the following avenues can be 

explored to improve the detection of network traffic 

anomalies: 

• Using other methods such as those based on soft 

computing, knowledge-based, or a combination 

of learning algorithms. 

• Combining intrusion detection with a misuse 

detection approach, which detects known attacks 

based on stored signatures, to make the anomaly 

detection process more comprehensive. 

• Incorporating network security trials to confirm 

that the results of anomaly detection are related 

to system performance or security. 

In addition, the development of a real-time 

integrated anomaly detection and classification system 

is also possible. This system would continuously 

improve its detection capabilities by continuously 

updating its models. 
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