
JIKO (Jurnal Informatika dan Komputer) Accredited KEMENDIKBUD RISTEK, No.105/E/KPT/2022

Vol. 6, No. 2, Agustus 2023, hlm. 79-87 p-ISSN: 2614-8897

DOI: 10.33387/jiko.v6i2.6092 e-ISSN: 2656-1948

79

DATA MINING IMPLEMENTATION FOR DETECTION OF ANOMALIES IN

NETWORK TRAFFIC PACKETS USING OUTLIER DETECTION APPROACH

Kurnia Setiawan1, Arief Wibowo2

1Politeknik Siber dan Sandi Negara

1,2Universitas Budi Luhur
*Email: 11911601324@student.budiluhur.ac.id, 2arief.wibowo@budiluhur.ac.id

(Received: 11 May 2023, Revised: 224 May 2023, Accepted: 5 June 2023)

Abstract

A large number of data packet records of network traffic can be used to evaluate the quality of a network and to

analyze the occurrence of anomalies in the network, both related to network security and performance. Based on

the data obtained, the event of irregularities in computer networks can not be explicitly detected on which traffic

packets. Meanwhile, monitoring network traffic packets manually will require a lot of time and resources, making

it difficult to see potential anomaly events more precisely. This study analyzes network packet traffic data through

several general steps, including the process of capturing network packet traffic data, identifying security

vulnerabilities by searching for anomalous traffic packets using an outlier detection approach, validating the results

of outlier detection with expert information, and then conducting a classification and evaluation process. In the

outlier detection process using the Isolation Forest algorithm, the results showed 1,643 records (4.86%) classified

as outlier types, while 32,098 (95.13%) classified as inliers. Subsequently, validating and filtering the expert

attributes containing expert information is conducted. The outlier detection results were classified using five

comparison algorithms: Random Forest Classifier, Support Vector Machine, Decision Tree Classifier, K-Nearest

Neighbor, and Bernoulli Naive Bayes. The Random Forest algorithm has the highest score for accuracy, macro

average precision, and macro average f1-score, namely 0.9962067330488383, 0.78, and 0.82.

Keywords: Traffic packets, Anomalies, Isolation Forest algorithm, Random Forest algorithm

This is an open access article under the CC BY license.

*Corresponding Author: Kurnia Setiawan

1. INTRODUCTION

Computer networks are essential for preserving an

organization business processes's continuity,

particularly with the fast-paced development of the

internet and interconnecting technologies. To ensure

the availability of computer network services, one

must take steps to eliminate threats in network traffic.

Network traffic refers to the data present on the

network when it is active, with information being

exchanged in the form of service resource access

requests and provider responses [1]. Threats to

network traffic can come from several sources, such as

malicious activities utilizing network services,

network overload, device damage, and the leak of

network parameters such as protocols and ports [1]. To

address these threats, it is necessary to monitor

network traffic using a monitoring system to capture,

analyze, and determine whether a packet is normal or

an anomaly. Traffic anomalies in the network are

defined as events or operations that deviate from the

normal behavior of the network [1].

Based on network monitoring data from October

2021, 1,075 anomalous occurrences were found in

computer networks involving 187 devices, but the

specific traffic packets involved have not been

detected. To carry out further analysis and

investigation, it is necessary to gather more specific

information about the anomalous traffic packets. This

is crucial for investigating security and network

performance issues related to these anomalies.

However, manual monitoring of traffic packets would

require a significant amount of time and resources,

making it difficult to detect potential anomalous events

in network traffic packets with specificity.

There are two commonly used approaches in

monitoring systems for detecting threats in a network:

Misuse detection and Anomaly-based detection [2].

Misuse detection systems, also known as Signature-

based detection, use a recognized pattern or a database

https://creativecommons.org/licenses/by/4.0/

Setiawan, K and Wibowo, A., Data Mining Implementation … 80

of suspect activities and operations that may be

dangerous. However, this approach has limitations, as

it can only detect intrusions whose attack patterns have

already been identified and stored. New and

unrecognized attack patterns are less detectable.

Anomaly-based detection aims to recognize new

attack patterns, assuming that every intrusion activity

is an anomaly in the network, and builds a normal

activity profile [1]. Outlier Detection is a technique

used to detect network traffic anomalies, where the

assumption is that an anomaly is an unusual

occurrence in the network [1]. This research focuses

on using data mining methods to detect potential

anomalies in network traffic packets and classify them

more accurately.

In the related previous research [3], it was found

that the Isolation Forest algorithm had the highest

accuracy and F1 score, specifically at a flow-timeout

threshold of 120s, with values of 98% and 87%

respectively. However, the True Positives (TP) rate

was not very high, reaching only 77%. This means that

the correct classification of successfully detected

malicious flows is not very high. In addition, the

research conducted by [4] utilized Autoencoder (AE)

and Isolation Forest (IF) for the binary classification

of incoming traffic on fog devices, aiming to make

real-time decisions on attacks and normal traffic. The

study achieved a high accuracy rate of 95.4%.

However, it should be noted that the classification

process is conducted in real time without validation

through expert information, which could potentially

enhance the accuracy of detection. Therefore, in this

study, further development was conducted using a

different dataset and by incorporating expert

information validation methods during outlier

detection. This ensures that outlier detection results are

not immediately labeled as anomalies. Subsequently,

the detected anomalies were classified using the

Random Forest algorithm, resulting in an accuracy of

99%. Each label also had its own accuracy, precision,

recall, and F1 score values.

The data used in this study was obtained from

network traffic packets captured using Wireshark. The

data mining method with the Outlier Detection

algorithm approach uses the Isolation Forest

algorithm. Subsequently, the detected anomalies are

classified using a data mining classification algorithm,

enabling the development of a classification model for

detecting packet traffic anomalies on the network. This

allows the models and prototypes developed to be

utilized for in-depth analysis of network traffic packet

data, thereby detecting potential anomalous

occurrences on the network.

2. RESEARCH METHOD

This research was conducted to determine the

most appropriate data mining model for detecting

potential network anomalies based on network traffic

packet datasets. This is because there are difficulties in

conducting an in-depth analysis of packet capture

network traffic, and it is challenging to manually

detect anomalies with a large number of traffic

packets. In related studies, the recommended data

mining classification model for detecting network

anomalies in network traffic packet datasets is not

explicitly explained. In the case of commonly used

data mining classification methods for detecting

anomalies in public NSL-KDD datasets, there are

several research references related to the classification

of Intrusion Detection System (IDS) data. One such

study, conducted by [5], compares the Naive Bayes

(NB), Random Tree, Random Forest (RanFor), and

J48 methods for classification. The results showed

that, in comparison to other algorithms, the RF

approach offered a relatively higher level of accuracy

[5]. This study is relevant to the review as research [6]

and [4] have similarities, using the Isolation Forest

algorithm to detect outliers or anomalies in fog

computing devices and network management systems.

There is also relevance to other research related to

network traffic capture data, such as research [7] that

compares the Decision Tree (DT), Support Vector

Machine (SVM), K-Nearest Neighbor (K-NN), and

Convolutional Neural Network (CNN) methods on

network packet capture data (using the KDD NSL

dataset) to detect Distributed Denial of Service attacks.

Previous research related to outlier detection can

be seen in [8], which compares outlier detection in two

datasets of hospital drug use through a comparison

between the K-Means, LOF, and OC-SVM

algorithms. Another example can be seen in [9], where

the researchers utilized the K-Means clustering

algorithm and neural networks to detect outliers in

social media network analysis. The Isolation Forest

algorithm was chosen for outlier detection in this study

due to its ability to eliminate computational costs by

not relying on distance or density measures. This

advantage makes the Isolation Forest algorithm a

suitable choice for detecting anomalies in large and

complex data sets [4]. The Isolation Forest algorithm

adopts a unique approach to anomaly detection by

isolating instances without relying on distance or

density, capitalizing on two key properties of

anomalies: they are a minority of instances and they

have attribute values that significantly differ from

those of normal examples, or, in other words,

anomalies are "few and different" [10].

Previous studies have used the Isolation Forest

algorithm in various ways. In [4], the Autoencoder

(AE) and the Isolation Forest (IF) algorithms were

used for binary classification of incoming traffic on

fog devices, where the system had to make real-time

decisions regarding attacks and normal traffic.

Another study [6] employed statistical methods to

extract features and utilized the Isolation Forest

algorithm to perform two classifications, resulting in

fast and accurate anomaly detection across various

types of data. Other research related to data mining

classification conducted by [5], [11], [12], [13], [14],

[15], [16], [17], [18], [19], and [20] have used

Setiawan, K and Wibowo, A., Data Mining Implementation … 81

algorithms such as SVM, K-NN, General Regression

Neural Network, RanFor, C4.5, NB, and analysis of

visitor logs with average errors. The research utilizes

stages of method the Cross-Industry Standard Process

for Data Mining (CRISP-DM), as outlined in [21], as

a guide for incorporating data mining into problem-

solving strategies in businesses or research units. In

general, the steps taken in this research include data

collection and data preparation, outlier detection and

validation, classification and evaluation, as well as

prototype design, as depicted in Figure 1.

Figure 1 Data Analysis Diagram of Potential Anomaly Detection

Modeling

The explanation for Figure 1 is as follows,

depicting the sequential stages of the method: Data

Collection and Data Preparation, Outlier Detection

and Validation, Classification and Evaluation, and

Prototype Design.

2.1 Data Collection and Data Preparation

The data collection method in this study involves

capturing network traffic packets using Wireshark

tools, which are open-source tools for packet

capturing. Wireshark provides more in-depth

information and expert insights to assist in the process

of detecting outliers and classifying potential network

traffic packet anomalies.

Based on the packet capture data from the

network, the data is prepared for processing in the next

step. The data preparation process involves setting the

columns that appear in the Wireshark application,

saving the network traffic packet data file in CSV

format, selecting attributes (columns) for the outlier

detection process, and undergoing several other data

preparation steps.

2.2 Outlier Detection and Validation

Outlier analysis is performed to detect potential

anomalies in network traffic packets using the

Isolation Forest method. This method separates

entities that are outliers (few and different) from

normal entities by randomly selecting two features

from the network traffic packet dataset and comparing

the data with the range of values of the selected

features to isolate them.

After performing the outlier detection, the results

were validated by examining the expert information.

The expert information includes "Note", "Chat",

"Warning", and "Error" information, which provides

initial guidance for the investigation. Expert

information serves as a starting point to give a clearer

picture of unusual or significant network behavior. It's

essential to remember though, that the existence of

expert information does not inevitably signify a

problem and the absence of expert information does

not always mean everything is functioning normally

[22]. To get a more specific number of outliers, the

results of the outlier detection were further analyzed

by filtering the outliers based on the expert

information in the form of "Warning" and "Error".

These two statements indicate serious warnings and

problems, making the data more likely to be

anomalous and a priority for further investigation.

2.3 Classification and Evalution

After obtaining the new labels, including normal

data labels/inliers, outliers, errors, and warnings &

outliers, the next step is to perform data mining

classification to obtain a classification model for

potentially anomalous network traffic packets. The

classification process was performed using five

different algorithms: Random Forest, Support Vector

Machine, Decision Tree, K-Nearest Neighbor, and

Bernoulli Naive Bayes. An evaluation was then

conducted by comparing the scores of accuracy,

precision, recall, and F1-score.

The Random Forest algorithm has the highest

accuracy score compared to other algorithms, so the

implementation of the Random Forest algorithm is

broken down into the following algorithm stages:

a. Bootstrap dataset creation

An estimation technique known as bootstrap is

used to produce the predictions, by resampling

the data set and selecting a random sample from

the initial data set using a bagging process.

b. Making a Decision Tree (Decision tree)

By using the bootstrap dataset produced in the

preceding step, construct a decision tree.

Additionally, when creating it, just a portion of

the dataset is taken into account, with a subspace

of random variables being chosen as root nodes

at each stage. Then repeat the same process for

each subsequent branch node, by randomly

selecting several variables as candidate branch

nodes.

c. Return to the initial step and repeat

Each decision tree in Random Forest categorizes

output classes according to the specific predictor

factors that were employed. The output class is

determined by which class receives the most

votes.

After obtaining the classification results with the

highest-scoring algorithm, the classification model is

stored in the Pickle format. A simple application is

then developed using the Django framework for

Setiawan, K and Wibowo, A., Data Mining Implementation … 82

classifying potentially anomalous network traffic

packet data.

2.4 Prototype Design

The development of the application uses the

Pickle model that was generated and stored in the

modeling stage, using the Python programming

language with the Django frame in the development of

application prototype. Thus, if there is new network

traffic packet data or additional data, modeling can be

carried out again to produce an updated model, which

is expected to result in more accurate classification.

3. RESULT AND DISCUSSION

Based on the network traffic packet capture data

obtained, there are 33,741 traffic packet records

captured with attributes consisting of number, time

(time in seconds), source (source IP address),

destination (destination IP address), protocol (network

protocol used). used), length (packet length in bytes),

and info (explanation of information). To get more

complete data, a simple configuration is performed on

the traffic packet capture results, in columns

preferences to display other information, namely

source port, destination port, stream index, TCP

segment. len (tcp segment length), sequence number

(tcp sequence), sequence number (raw), next sequence

number, acknowledgment number, acknowledgment

number (raw), header length (tcp header length), flags

(tcp flags), and expert (expert information in the form

of hints according to severity level). After that, the

attributes that will be used for the data mining process

are selected, namely: protocol, length, source port,

destination port, TCP segment len, sequence number,

acknowledgment number, header length, flags, and

expert. These data attributes have the characteristics of

different data types, categorical data types are found in

the attributes: protocol, flags, and expert, while

numeric data types are found in the attributes: length,

source port, destination port, TCP segment len,

sequence number, acknowledgment number, and

header length.

It was found that the most used Protocol Attribute

was TCP Protocol with 18,594 instances. TCP

Protocol is a protocol used for exchanging information

between devices on the network. The initial data

contained records with null or NaN (Not a Number)

values, which required several data preparation steps

before the first data mining process using the Isolation

Forest algorithm could be performed. The first step

involved transforming the null or NaN data. In

addition, categorical data, such as protocol, flags, and

expert, were transformed into numeric data.

3.1 Outlier Detection and Validation

The first modeling implementation to detect

outliers from network traffic packet data uses the

Isolation Forest algorithm. The steps taken are as

follows:

a. Determine the x variable which consists of the

protocol, length, source port, destination port, tcp

segment length, sequence number,

acknowledgment number, header length, and

flags attributes, and the y variable is the expert

attribute.

b. Calculates the isolation forest score for each

record.

c. Mark a score with a minus (-) value with an

anomaly label -1 and vice versa with a value of

1. Then each label -1 is added with outliers and

label 1 is added with inliers. Graphical display of

the number of outliers and inliers data

frequencies can be seen in the following figure.

Figure 2 Histogram Data Outliers and Inliers

In Figure 2 it is explained that based on these

results, 1,643 records (4.86%) were found to be

outliers, while inliers were 32,098 records (95.13%).

A check is made on the attribute of the expert which

contains expert information which is the starting point

of the investigation, to give a better picture of unusual

or important network behavior, but the presence of

expert information does not always indicate a problem

and there is no expert information doesn't always mean

all is well. The expert information contained in the

traffic packet data capture consists of 4,231 records

labeled "Note", 1,538 "Warning", 1,051 "Chat", and

15 "Error". The description "Chat" is information

about ordinary workflows, "Note" is a note of

important events, "Warn" is a warning when an

application gives an odd error code, such as one

indicating a connection issue, and "Error" is a serious

problem, such as a defective package (malformed). So

that the outlier detection data is filtered which has

expert information in the form of "Warn" and "Error"

and with the description "outlier", to label the potential

anomaly data.

Setiawan, K and Wibowo, A., Data Mining Implementation … 83

Figure 3 The amount of data labeled "inliers", "outliers", "warning

& outlier", and "Error"

In Figure 3 it is explained that the number of

potential anomaly data labels consists of 89 records

with the description "warning & outlier", 15 "error",

1,554 "outliers", and 32,083 "inliers".

3.2 Classification and Evalution

Based on the results of the outliers detection,

classification was carried out using 5 algorithms as a

comparison, where the RanFor algorithm had the

highest accuracy score. In Table 1 it is explained that

comparison of the accuracy scores of each algorithm

in the classification process can be seen as follows.

Table 1 comparison of classification algorithm accuracy scores

No. Algorithms Accuracy Score

1. Random Forest 0,9962067330488383
2. Support Vector Machine 0,9467757230915126

3. Decision Tree 0,9958511142721669

4. K-Nearest Neighbor 0,9770033191085823
5. Bernoulli Naive Bayes 0,9468942626837363

3.2.1 Classification process

The classification process in the Random Forest

algorithm can be explained as follows,

a. Bootstrap dataset creation

Bootstrapping is a technique that involves

picking random samples from the original data set

using a bagging process in order to generate

predictions on data sets.

• Defined index to divide the dataset into training

data and testing data

BEGIN

NUMERIC population, k, test_indices, ts_d, tn_d

population = data index

k = test_size

test_indices = random sampling of the

population with size k

ts_d = data selection in test_indices from row to

row and from column to column

tn_d = remaining data other than ts_d

END

• Also defined is the bootstrapping process to get

a random sample and replace it

BEGIN

NUMERIC tn_d, bootstrap_indices, n_btp,

df_bootstrap

bootstrap_indices = random sampling on tn_d by

returning an array and filling it with random

integers in low (0) to high (length of tn_d)

intervals

df_bootstraped = selection of data that is

bootstrap_indices in tn_d

END

• Bootstrapping process

b. Conduct training dataset on a number of random

features

• Define a function to get the split potential of the

training data

BEGIN

NUMERIC data, random_subspace, n_columns,

columns_indices, k, unique_values,

potential_splits

n_columns = number of columns in the data

column_indices = value data in the range of all

features except labels/classes (n_columns – 1)

IF random_subspace & random_subspace <=

number of column_indices THEN

column_indices = random sampling on the

column_indices population with size k =

random_subspace

FOR column_indices

unique_values = defines the unique elements of

the data

the potential_splits output of column_index is

unique_values

END FOR

END
• Do split data training with random subspace

• The Random Forest algorithm is defined, with

the parameter tn_d being the dataset, n_tri

being the number of trees, n_btp being the size

of the bootstrap dataset, n_fs being the number

of features to be trained, and dt_md is the

maximum tree depth

BEGIN

NUMERIC tn_d, n_tri, n_btp, n_fs, dt_md

n_tri = number of trees

n_btp = bootstrap dataset size

n_fs = number of features to be trained

dt_md = maximum tree depth

FOR i on range n_tri

d_btpd = selection of data which is

bootstrap_indices in tn_d with bootstrap dataset

size n

tree = forming a tree using the d_tri algorithm,

with d_btpd data selection, dt_md tree depth, and

random_subspace a number of features trained

output forest = adds the tree that is formed in the

list that contains all trees

END FOR

END
• Training is carried out using the Random Forest

algorithm

BEGIN

NUMERIC tn_d, n_tri, n_btp, n_fs, dt_md,

random_forest_algorithm

n_tri = number of trees

n_btp = bootstrap dataset size

n_fs = number of features to be trained

dt_md = maximum tree depth

input n_tri, n_btp, n_fs, dt_md

forest = random_forest_algorithm training

process with dataframes tn_d, n_tri, n_btp, n_fs,

and dt_md

END

Setiawan, K and Wibowo, A., Data Mining Implementation … 84

c. Perform classification with the Random Forest

algorithm

BEGIN

NUMERIC ts_d, forest, df_predictions

d_tri_predictions = sample prediction process

FOR i in the long range of the forest

df_predictions = process of predicting

d_tri_predictions with ts_d and a number of tree

forests i

END FOR

END

Classification process with iterations 10 times by

also evaluating the results of the average

accuracy score.

BEGIN

NUMERIC tn_d, ts_d, n_tri, n_btp, n_fs, dt_md,

forest, predictions, accuracy

input n_tri, n_btp, n_fs, dt_md

FOR i in range 10

forest = random_forest_algorithm training

process with dataframes tn_d, n_tri, n_btp, n_fs,

and dt_md

predictions = process predictions

random_forest_predictions with ts_d and forest

a number of i

accuracy = calculates the accuracy of the

prediction results for the ts_d label

END FOR

accuracy score output for each i and average

accuracy

END

d. Evaluation of classification results

In table 2 it is explained that based on the

classification process, the confusion matrix is

obtained as follows.

Table 2 Precision, recall, f1-score, and support for the Random

Forest algorithm

 Precision Recall F1-

score

Suppor

t

Error 0,00 0,00 0,00 0
Inliers 1,00 0,99 0,99 6503

Outliers 0,76 0,90 0,82 245
Warning & Outlier 0,00 0,00 0,00 0

Accuracy 0,99 6748

Macro avg 0,44 0,47 0,45 6748
Weighted avg 0,99 0,99 0,99 6748

Based on the table it is known that there are 2

classes/labels that are not classified, this may be

due to imbalanced data, where the labels "Error"

and "Warning & Outlier" have a relatively small

number of records when compared to other

labels.

e. Perform over sampling using the SMOTE

method

Oversampling is done by resampling using the

SMOTE method, namely synthesizing new

samples from the minority class to balance the

dataset by resampling the minority class samples.

After oversampling, the number of labels

produced is illustrated in Figure 4 below.

Figure 4 Comparison of the number of records on each label after

over sampling

Based on the oversampling results, a

classification process is carried out with the The

Random Forest algorithm and the confusion

matrix are obtained as described in table 3 below.

Table 3 Precision, recall, f1-score, and support with Random
Forest based on oversampling

 Precision Recall F1-score Support

Error 0,38 0,94 0,54 78

Inliers 0,99 0,96 0,97 6685

Outliers 0,57 0,74 0,65 230
Warning & Outlier 0,69 0,92 0,79 154

Accuracy 0,95 7147

Macro avg 0,66 0,89 0,74 7147
Weighted avg 0,96 0,95 0,95 7147

3.2.2 Characteristics of each classification label

Based on these results, it is known that all

classes/labels can be classified, but there are labels

with not too high precision, recall, and f1-score,

namely:

a. The “Error” label has a precision score of 0.38;

this shows that the ratio of true positive

classification compared to the overall results

classified as positive is less than half, so that the

percentage of correct labels "error" of all those

classified as "error" is quite low. Recall score

0.94; shows the ratio of true positive classification

compared to all data that is true positive is high,

so that the percentage classified as "Error"

compared to all data that is actually labeled

"Error" is high. And the f1-score of 0.54 shows

that precision and recall's overall mean is not

particularly high.

b. The "Outliers" label has a precision score of 0.57;

this shows that the ratio of true positive

classification compared to the overall results

classified as positive is half, so that the percentage

of correct labels "Outliers" of the total classified

as "error" reaches half. In addition recall score of

0.74, indicating the ratio of true positive

classification compared to all data that is true

positive is sufficient but not too high, so that the

percentage classified as "Outliers" compared to all

data that is actually labeled "Outliers" is sufficient

Setiawan, K and Wibowo, A., Data Mining Implementation … 85

but not too high. And the f1-score 0.65 indicates

that precision and recall's overall mean is not

particularly high.

c. The “Warning & Outlier” label has a precision

score of 0.69; this shows that the ratio of true

positive classification compared to the overall

results that are classified as positive is sufficient

but not too high, so that the percentage of correct

labels "error" from all those classified as

"Warning & Outlier" is sufficient but not too high.

Recall score 0.92; shows the ratio of true positive

classification compared to all data that is true

positive is high, so that the percentage classified

as "Warning & Outlier" compared to all data that

is actually labeled "Warning & Outlier" is high.

And the f1-score of 0.79 shows that precision and

recall's overall mean is not particularly high.

3.3 Prototype Design

Based on the classification results achieved by the

Random Forest algorithm, deployment is carried out

for building a simple application prototype to classify

whether or not there is a potential anomaly from

network traffic packet data, using the Random Forest

classification model that has been stored. This simple

application is to confirm that the model that has been

formed can be implemented for classifying traffic

packet data. The development of the application uses

the Django framework.

Figure 5 Classification process with the RanFor algorithm on the

prototype

The classification page describes the functions for

uploading and selecting the dataset to be used.

Furthermore, there is a classification function using

the Random Forest algorithm, which produces an

accuracy score and a confusion matrix as an

evaluation, as illustrated in the screenshot of the

application in figure 5. On the prediction classification

page, new traffic packet data is entered as input for

classification as a potential anomaly or not, using the

Random Forest algorithm classification results model,

illustrated in the screenshot of the application in figure

6.

Figure 6 Classification results of traffic packet data with the label

"Outliers"

Besides that, on the Classification Results Data

page, users can see the history of the process of

classifying data traffic packets that can be exported,

illustrated in the screenshot of the application in figure

7.

Figure 7 Classification result data

Based on the results of these studies, a data mining

algorithm with an outlier detection approach, Isolation

Forest algorithm, can be implemented to detect

potential network traffic packet anomalies, and the

RanFor algorithm can be implemented to accurately

classify potential network traffic packet anomalies.

4. CONCLUSION

In this research, an anomaly detection and

potential anomaly classification were carried out on

network traffic packet data using the Isolation Forest

algorithm for outlier detection and the Random Forest

algorithm for classification. The Isolation Forest

algorithm identified 1,643 records (4.86%) as outliers

and 32,098 records (95.13%) as inliers. The results of

the outlier detection were then checked against the

"expert" attribute, which contains expert information

and serves as a starting point for investigations.

Outliers with expert information labeled as "Warn"

and "Error" were filtered and labeled as potential

Setiawan, K and Wibowo, A., Data Mining Implementation … 86

anomaly data. The potential anomaly data was then

labeled as 89 records with "warning & outlier", 15 with

"error", 1,554 as "outliers", and 32,083 as "inliers".

The Random Forest algorithm can be applied to

classify potential network traffic anomalies. It was

compared to five other classification algorithms,

namely Random Forest Classifier, Support Vector

Machine, Decision Tree Classifier, K-Nearest

Neighbor, and Bernoulli Naive Bayes. Out of these

five algorithms, the Random Forest algorithm showed

the highest accuracy, macro average Precision, and

macro average f1-score, with accuracy value

0.9962067330488383, precision macro average 0.78,

and macro-average f1-score of 0.82. The macro

average Recall was obtained from the Decision Tree

Classifier, with a value of 0.93. Based on these

findings, the Random Forest algorithm was chosen for

classifying potential network traffic packet anomalies.

The resulting classification model can categorize

samples as "inliers", "outliers", "Error", and "warning

& outlier". However, the "error" and "warning &

outlier" labels have precision, recall, and f1-score

values that are only sufficient but not high, with

precision value 0.50, recall 1.00, and f1-score 0.67 for

"error"; and precision value 0.64, recall 0.70, and f1-

score 0.67 for "warning & outlier".

In this study, the potential anomalies in network

traffic packet data have not been determined to be

related to system performance or security. Further

research, such as network security testing, is needed to

confirm this. The findings of this study mainly

categorize network traffic packet data that has the

potential to be anomalous, labeled as "Error" and

"Warning & Outlier." The classification model

obtained from this study can aid in prioritizing the

investigation process for anomalies, both related to

performance and security. By starting with "Error" and

"Warning & Outlier" data, the investigation can be

further extended to "Outlier" and "Inlier" data if

necessary.

For further research, the following avenues can be

explored to improve the detection of network traffic

anomalies:

• Using other methods such as those based on soft

computing, knowledge-based, or a combination

of learning algorithms.

• Combining intrusion detection with a misuse

detection approach, which detects known attacks

based on stored signatures, to make the anomaly

detection process more comprehensive.

• Incorporating network security trials to confirm

that the results of anomaly detection are related

to system performance or security.

In addition, the development of a real-time

integrated anomaly detection and classification system

is also possible. This system would continuously

improve its detection capabilities by continuously

updating its models.

5. REFERENCE

[1] M. H. Bhuyan, D. K. Bhattacharyya, and J. K.

Kalita, Network Traffic Anomaly Detection

Techniques and Systems. Springer, 2017.

[2] V. Jyothsna and K. M. Prasad, “Anomaly-Based

Intrusion Detection System,” Intechopen, pp. 1–

15, 2019.

[3] P. R. Grammatikis, P. Sarigiannidis, A.

Sarigiannidis, D. Margounakis, A. Tsiakalos, and

G. Efstathopoulos, “An Anomaly Detection

Mechanism for IEC 60870-5-104,” 2020 9th Int.

Conf. Mod. Circuits Syst. Technol. MOCAST

2020, pp. 0–3, 2020, doi:

10.1109/MOCAST49295.2020.9200285.

[4] K. Sadaf and J. Sultana, “Intrusion detection

based on autoencoder and isolation forest in fog

computing,” IEEE Access, vol. 8, pp. 167059–

167068, 2020, doi:

10.1109/ACCESS.2020.3022855.

[5] L. Mohan, S. Jain, P. Suyal, and A. Kumar, “Data

mining Classification Techniques for Intrusion

Detection System,” Proc. - 2020 12th Int. Conf.

Comput. Intell. Commun. Networks, CICN 2020,

pp. 351–355, 2020, doi:

10.1109/CICN49253.2020.9242642.

[6] X. Chun-Hui, S. Chen, B. Cong-Xiao, and L.

Xing, “Anomaly Detection in Network

Management System Based on Isolation Forest,”

Proc. - 2018 4th Annu. Int. Conf. Netw. Inf. Syst.

Comput. ICNISC 2018, pp. 56–60, 2018, doi:

10.1109/ICNISC.2018.00019.

[7] A. R. Shaaban, E. Abd-Elwanis, and M. Hussein,

“DDoS attack detection and classification via

Convolutional Neural Network (CNN),” Proc. -

2019 IEEE 9th Int. Conf. Intell. Comput. Inf. Syst.

ICICIS 2019, pp. 233–238, 2019, doi:

10.1109/ICICIS46948.2019.9014826.

[8] E. H. Budiarto, A. Erna Permanasari, and S.

Fauziati, “Unsupervised anomaly detection using

K-Means, local outlier factor and one class

SVM,” Proc. - 2019 5th Int. Conf. Sci. Technol.

ICST 2019, 2019, doi:

10.1109/ICST47872.2019.9166366.

[9] P. Kaur, “Outlier Detection Using Kmeans and

Fuzzy Min Max Neural Network in Network

Data,” Proc. - 2016 8th Int. Conf. Comput. Intell.

Commun. Networks, CICN 2016, pp. 693–696,

2017, doi: 10.1109/CICN.2016.142.

[10] F. T. Liu, K. M. Ting, and Z. H. Zhou, “Isolation-

based anomaly detection,” ACM Trans. Knowl.

Discov. Data, vol. 6, no. 1, pp. 1–44, 2012, doi:

10.1145/2133360.2133363.

[11] D. Narayan, A. Malony, and C. Louella,

“Intrusion Detection System Using Data Mining

Techniques,” Int. J. Adv. Res. Comput. Sci. Softw.

Eng., vol. 7, no. 5, pp. 450–452, 2017, doi:

10.23956/ijarcsse/v7i5/0161.

[12] K. Gurulakshmi and A. Nesarani, “Analysis of

IoT Bots against DDOS attack using Machine

Setiawan, K and Wibowo, A., Data Mining Implementation … 87

learning algorithm,” 2018 2nd Int. Conf. Trends

Electron. Informatics, no. Icoei, pp. 1052–1057,

2018.

[13] H. Hafid, “Investigasi Log Jaringan Untuk

Deteksi Serangan Distributed Denial of Service (

Ddos) Dengan Menggunakan Metode General

Regression Neural Network.” 2019.

[14] M. O. Miah, S. S. Khan, S. Shatabda, and D. M.

Farid, “Improving Detection Accuracy for

Imbalanced Network Intrusion Classification

using Cluster-based Under-sampling with

Random Forests,” 1st Int. Conf. Adv. Sci. Eng.

Robot. Technol. 2019, ICASERT 2019, vol. 2019,

no. Icasert, pp. 1–5, 2019, doi:

10.1109/ICASERT.2019.8934495.

[15] Rastri Prathivi and Vensy Vydia, “Analisa

Pendeteksian Worm dan Trojan pada Jaringan

Internet Universitas Semarang menggunakan

Metode Klasifikasi pada Data Mining,” J.

Transform., vol. 14, no. 2, pp. 77–81, 2017.

[16] M. F. Fibrianda and A. Bhawiyuga, “Analisis

Perbandingan Akurasi Deteksi Serangan Pada

Jaringan Komputer Dengan Metode Naïve Bayes

Dan Support Vector Machine (SVM),” J.

Pengemb. Teknol. Inf. dan Ilmu Komput., vol. II,

no. 9, pp. 3112–3123, 2018.

[17] S. Anwar, F. Septian, and R. D. Septiana,

“Klasifikasi Anomali Intrusion Detection System

(IDS) Menggunakan Algoritma Naïve Bayes

Classifier dan Correlation-Based Feature

Selection,” J. Teknol. Sist. Inf. dan Apl., vol. 2, no.

4, p. 135, 2019, doi: 10.32493/jtsi.v2i4.3453.

[18] M. Nivaashini and P. Thangaraj, “A framework of

novel feature set extraction based intrusion

detection system for internet of things using

hybrid machine learning algorithms,” 2018 Int.

Conf. Comput. Power Commun. Technol.

GUCON 2018, pp. 44–49, 2019, doi:

10.1109/GUCON.2018.8674952.

[19] R. M. Imam, P. Sukarno, and M. A. Nugroho,

“Deteksi Anomali Jaringan Menggunakan Hybrid

Algorithm,” e-Proceeding Eng., vol. 6, no. 2, pp.

8766–8787, 2019.

[20] M. Reza Redo Islami, “Deteksi Dini Serangan

Pada Website Menggunakan Metode Anomali

Based Early Detection of Attacks on

Websitesusing the Based Anomaly Method,” J.

Inform. dan Komputer) Akreditasi

KEMENRISTEKDIKTI, vol. 5, no. 3, pp. 224–

229, 2022, doi: 10.33387/jiko.

[21] D. T. and Larose and C. D. Larose, Data Mining

and Predictive Analytics. JohnWiley &Sons,Inc.,

2015.

[22] Wireshark, “Expert Information, Chapter 7.

Advanced Topics.”

https://www.wireshark.org/docs/wsug_html_chu

nked/ChAdvExpert.html (accessed Jun. 24,

2022).

