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Abstract 

 

This research compares two popular deep-learning models, VGG16 and VGG19, for insect classification. This 

study aims to evaluate insect detection architectures to automate insect identification. We use a large, 

heterogeneous dataset of insect species, including common pests and beneficial insects, and their images to achieve 

this goal. The dataset was used to re-adjust the VGG16 and VGG19 models and analyze their classification 

performance. With an average improvement of 1,8%, VGG19 outperforms VGG16 in insect classification 

accuracy. VGG19 is more robust because it can handle complex traits and subtle insect morphology differences. 

Each architecture's model training duration and computational resources are examined for their practicality in real-

world scenarios. This research emphasizes deep learning models in insect classification and shows VGG19's higher 

accuracy and robustness than VGG16. These findings matter to entomologists, agricultural researchers, and pest 

control experts. They can improve insect identification accuracy and effectiveness using VGG19-based models, 

which can help solve insect-related problems in various fields. 96.28 percent accuracy was achieved with the 

implementation of VGG16, according to the experimental findings; 97.07 percent accuracy was obtained with the 

implementation of VGG19. The research compares VGG16 and VGG19 models for identifying insects, aiming to 

find the most robust and accurate model for agricultural research. 
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1. INTRODUCTION 

According to this study, accurate insect 

classification is crucial to ecosystem preservation and 

agricultural management. As pests and pollinators, 

insects affect food webs. Information technology has 

made insect classification easier, especially with deep 

learning architectures. Two Convolutional Neural 

Network architectures [1] are compared for insect 

identification system improvement. Image processing 

and deep learning automate classification, saving time 

and labor. The study improves insect diversity 

knowledge in agriculture, nature conservation, and 

entomology. This research advances insect 

identification systems by using advanced 

technologies, improving their efficiency and 

effectiveness in managing diverse insect populations. 

In recent times, there has been a notable 

advancement in insect categorization by utilizing deep 

learning techniques. Prior studies have employed 

diverse architectures, such as Convolutional Neural 

Networks, to conduct insect classification tasks. This 

study introduces a deep learning model based on 

convolutional neural networks [2] to detect and 

classify insects and pests that affect plants. The model 

employs ensemble methods incorporating VGG16, 

VGG19, and ResNetv50 architectures. The 

experimental findings demonstrate that the ensemble 

model exhibits an accuracy rate of 82.5%, surpassing 

the performance of prior models and substantiating its 

efficacy in classifying pests and insects within crops 

[3]. This study emphasizes the significance of 

identifying plant diseases in the agricultural sector. 

The study utilized plant image datasets and 

implemented deep learning models, including CNN, 

VGG-16, VGG-19, and ResNet-50. Among these 

models, ResNet-50 demonstrated the highest accuracy 

at 98.98%. By utilizing the findings of this study to 

create web applications for the early detection of plant 

diseases, this research aids farmers in averting 
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financial losses [4]. Early detection of jute pests is 

possible with the JutePestDetect model, founded on 

transfer learning. By employing a diverse set of pre-

trained models and utilizing a dataset encompassing 

seventeen pest classes, the JutePestDetect model 

demonstrated an impressive accuracy rate of 99%. 

This strategy can yield substantial advantages for 

farmers globally [5]. The global COVID-19 pandemic 

affects many aspects of life. This study proposes a 

deep learning-based COVID-19 severity model. 

Advanced pre-processing and feature extraction 

methods helped the model estimate COVID-19 

severity from chest X-rays with 98.2% accuracy [6]. 

They tested Deep Learning models to detect rice plant 

pests, diseases, and nutritional deficiencies. The best 

accuracy was 91.8% for VGG19, while a simple CNN 

model was 96% for phosphate-deficient leaves. This 

research can help farmers detect plant issues quickly 

and non-invasively in precision agriculture [7]. Based 

on the research mentioned above description, this 

research has not yielded an improvement in accuracy. 

Previous studies have reported higher levels of 

accuracy, with a recorded rate of 99%. However, the 

present research utilizes the VGG19 model, which 

achieves an accuracy of 97.07%, aiming to enhance 

the performance of the VGG16 model, which attained 

an accuracy of 96.28%. The percentage of research 

exceeding 96% is higher than that of research that falls 

below this threshold. The research addresses the 

discrepancy between 96% and 98% accuracy rates. 

This research aims to evaluate the efficacy of 

VGG16 and VGG19 [8], two insect classification 

models, in entomology, agriculture, and nature 

conservation. Identifying insects is essential for 

comprehending the ecological functions of various 

species and managing them in natural ecosystems. 

Convolutional neural networks and deep learning have 

significantly transformed the field of insect 

classification through their ability to automate the 

identification process and efficiently analyze images. 

The study incorporates various datasets, including 

detrimental and advantageous insects, to assess the 

effectiveness of the models in real-life situations. 

Considering limitations, practical considerations, 

including training duration and computational 

resources, will be examined to offer insights for a more 

extensive implementation. The research project 

foresees enhanced accuracy and efficiency in 

categorizing insects, which may have significant 

ramifications for sustainable agriculture, improved 

pest control, and advanced entomological studies. The 

potential benefits of combining entomological 

knowledge with deep learning technology include 

improved comprehension and management of insects' 

various functions in agricultural and ecosystem 

systems. 

2. RESEARCH METHOD 

The performance of different deep-learning 

models in identifying indications of pests, diseases, 

and nutritional deficiencies in rice plants forms the 

foundation of this research methodology. We utilize a 

combined dataset of images from public sources and 

real-world field captures. This study compares four 

pre-trained Deep Learning [9] models—InceptionV3, 

VGG16, VGG19 [10], and ResNet50 [11] — to a more 

basic Convolutional Neural Network (CNN) model. 

Experiments were performed utilizing diverse 

combinations of datasets to assess the accuracy of 

symptom classification. According to the findings, 

phosphate deficiency was identified more precisely by 

the simple CNN model than by VGG19. The outcome 

of this investigation could be the creation of non-

intrusive instruments that aid farmers in rapidly and 

effectively detecting crop issues. 

For this reason, this research proposes a solution 

to the problem. The following are the research steps as 

follows: 

 
Figure 1. Proposed Research Method 

Source: Researcher Property 

 

Figure 1 represents a collection of scholarly 

investigations that center on addressing issues 

pertaining to insects in plant species. The initial phase 

involves conducting a comprehensive review of 

relevant literature in order to gain a thorough 

understanding of the detrimental effects of insects on 

plant growth. The subsequent stage entails 

advancements in insect classification, with a primary 

emphasis on the identification of insect species that 

frequently pose a risk to plant life. In the following 

phase, the VGG16 and VGG19 deep learning [12] 

algorithms are employed as a means to classify insects 

autonomously. The utilization of these two algorithms 

is intended to address the intricacy and diversity 

observed in insect morphology, which poses a 

significant challenge in the process of insect 

identification on plants. The subsequent focal point 

pertains to the evaluation of the classification 

capabilities exhibited by these two algorithms. 

The comparison between VGG16 and VGG19 [13] 

demonstrated that while VGG16 exhibited a 

satisfactory level of accuracy, VGG19 outperformed it 

with a superior level of accuracy in the identification 

and classification of insects. Specifically, VGG19 has 

demonstrated exceptional capabilities in managing 

complexity and finer morphological variations in 

insects, thereby establishing its superiority in the 

domain of insect identification in plants. Based on the 

findings of this study, the employment of the VGG19 

algorithm in the classification of insects holds 

significant potential for advancing knowledge and 
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addressing pest-related issues in the realm of plant 

biology. The efficacy of VGG19 in handling the 

intricacies of insects instills optimism for the 

advancement of more efficient strategies in 

agricultural pest management. This holds the potential 

for timely detection and implementation of suitable 

measures to mitigate issues that may adversely impact 

plant cultivation. 

2.1 Convolutional Neural Network 

Convolutional Neural Networks [14], [15] 

(CNNs) are ideal for insect classification because they 

process image data. CNN applies convolutional layers 

to insect imagery to simulate human vision and 

understand intricate features. These layers use filters 

to extract insect-identifying edges, corners, and 

textures from the image. After the convolutional layer, 

CNNs typically have a pooling layer to reduce data 

dimensionality, a normalization layer to maintain data 

ranges, and a fully connected layer to classify 

extracted features. A diverse dataset with labels is 

needed to train CNNs for insect classification. Iterative 

weight and bias adjustments reduce prediction errors. 

This training relies on the backpropagation of errors 

through layers. CNN [16] ability to handle insect pose, 

size, and environmental conditions benefits 

entomology, agriculture, and pest control. Their insect 

identification accuracy helps these fields and saves 

time and resources compared to manual methods. 

CNNs have revolutionized insect classification and 

greatly benefited fields that rely on insect 

identification. 

2.2 VGG16 

The popular VGG16 Convolutional Neural 

Network [17] model classifies visual objects, 

especially insects. VGG16's 16 convolutional and 

image-processing layers made it famous in ImageNet 

competitions. By extracting edges, lines, textures, and 

shapes from images, VGG16 classified diverse insect 

species well. Its adaptability to image dimensions, 

orientations, and environmental conditions makes it 

suitable for insect classification in various settings. In 

entomology and agriculture, VGG16 [18] accurately 

identifies harmful and beneficial pests. To reduce 

prediction errors, VGG16 [10] uses insect image 

datasets to backpropagate neural network weights and 

biases during training. VGG16 helps scientists and 

farmers identify, manage, and understand insect 

ecology in agriculture due to its excellent image 

recognition performance. 

 

 

Figure 2. VGG16 Architecture 

Source: Google Image Modified 

 

Figure 2 shows the architecture of VGG16, a 

popular CNN for object classification and image 

recognition. The model understands complex image 

features thanks to its 16 convolutions and fully 

connected layers. Before applying a ReLU activation 

layer, the image undergoes several 3x3 convolution 

layers. This layer extracts important image features 

and patterns. After the convolution layer, the output 

undergoes max pooling to reduce data dimension 

while preserving the most prominent elements. This 

procedure is repeated to protect and enhance image 

data. Aggregating and linking extracted features to 

fully connected layers integrate global information 

from every image. Figure 1 shows an output layer with 

neurons from each class. Softmax activation functions 

help generate class probabilities in this layer. The 

VGG16 architecture uses extracted features to classify 

images into insect classes. The VGG16 architecture is 

known for its reliability and complex image 

recognition tasks. VGG16's high-hierarchical image 

representation is essential for organizing insects with 

complex variations despite the model's many 

parameters. Figure 1 shows the VGG16 architecture's 

layer structure and connections. This clarifies how the 

model classifies insect images. 

2.3 VGG19 

The VGG19 architecture [19], which comprises 

19 layers of Convolutional Neural Networks (CNNs), 

is a noteworthy instrument in insect classification 

owing to its proficiency in extracting complex features 

from images of insects (see Figure 3). VGG19, 

consisting of sixteen convolutional layers and three 

fully connected layers, distinguishes itself in detecting 

and identifying various insect species by progressively 

generating abstract representations via pooling and 

convolutional layers. The depth of the model improves 

its capability to accommodate discrepancies in insect 

sizes, orientations, and contextual environments, 

thereby enhancing the accuracy of classification. Max 

pooling and ReLU activation layers [20] are 

incorporated into the architecture to reduce data 

dimensions, introduce non-linearity, and improve 

computational efficiency. The final fully connected 

layers generate probabilities for various insect classes 

in an output layer employing a softmax activation 
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function. The computational capabilities and 

appropriateness of VGG19 for complex image 

recognition tasks establish it as a prominent option in 

entomology and agriculture, where it substantially 

influences the accuracy of insect identification, pest 

control, and ecological comprehension. The 

comprehensive illustration of the VGG19 architecture 

showcases the significance of the initial convolutional 

layers in capturing fundamental attributes such as 

shapes and edges. This insight thoroughly 

comprehends the model's early data progression from 

input to output. The hierarchical structure of this 

approach provides the basis for VGG19's ability to 

differentiate complex insect characteristics, 

underscoring its pivotal function in insect taxonomy. 

 
Figure 3. VGG19 Architecture 

Source: Google Image Modified 

 

3. RESULT AND DISCUSSION 

3.1. Dataset  

 

Figure 4. Dataset Insect 

Source: Google Image Modified 

 

The dataset presented in Figure 4 comprises 

insect image data sourced from Google Images. The 

dataset was acquired through the collection of diverse 

insect images from publicly available sources on the 

internet using the Google search engine. The data 

collection procedure was conducted meticulously to 

ensure a wide range of insect species, poses, and 

backgrounds, thereby enhancing the overall 

representativeness of the dataset. Using insect datasets 

holds significant value in developing and evaluating 

insect classification models encompassing intricate 

VGG19-like architectures. The dataset exhibits a range 

of diversity that mirrors the ecological conditions 

insects commonly encounter, including agricultural 

landscapes, forested areas, and urban environments. 

Next, the dataset is partitioned into separate training 

and test subsets to facilitate the model's practical 

training and evaluate its performance accurately. 

By utilizing insect datasets sourced from Google 

Images, it is anticipated that the resultant model will 

be able to identify and categorize diverse species of 

insects accurately. It is essential to consider that these 

datasets may encompass variations in image quality, 

lighting conditions, and orientation, posing challenges 

for models to exhibit robustness and adaptability 

across diverse circumstances. Datasets play a crucial 

role in machine learning, particularly in insect 

classification tasks, as they offer models a 

comprehensive understanding of the diverse range of 

insect variations observed in the natural environment. 

Figure 3 allows researchers and practitioners to follow 

and comprehend the range of variations that models 

encounter during the learning process from this 

dataset. The insect dataset obtained from Google 

Images, as illustrated in Figure 4, serves a crucial 

function in advancing and assessing insect 

classification models while also enhancing our 

comprehension of insect ecology. 

 

3.2. Experiment VGG16  

 
Figure 5. VGG16 Architecture 

The sequential model under consideration is a 

neural network architecture rooted in deep learning, 

comprising layers derived from VGG16. Each layer 

within this architecture is specifically crafted to 

facilitate hierarchical feature extraction. The VGG16 

architecture incorporates convolutional layers 

designed to extract intricate patterns from the input 

data, resulting in an output shape of (None, 9, 9, 512). 

The model mentioned above has a cumulative 

parameter count of 14,714,688, enabling it to acquire 

intricate representations. Following the convolutional 

layers, the process of average pooling is executed to 

diminish the spatial dimension, thereby facilitating the 

consolidation of information. To mitigate the issue of 

overfitting, a dropout layer is incorporated into the 

training process, wherein a subset of neurons is 

deliberately and randomly deactivated. Subsequently, 
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two densely connected layers, called dense and 

dense_1, are aggregating and abstracting features. The 

ultimate output layer, comprising 5,125 parameters, 

generates predictions from the model. 

The comprehensive model encompasses 

15,245,125 parameters, which can be classified into 

two distinct categories: trainable and non-trainable. 

The trainable parameters, which amount to a total of 

7,609,861, correspond to the weights and biases that 

undergo updates throughout the model's training 

process. In the VGG16 architecture, the non-trainable 

parameters consist of 7,635,264 fixed parameters. The 

architectural design, characterized by a substantial 

quantity of parameters, achieves a harmonious 

equilibrium between intricacy and efficacy, enabling 

the model to acquire intricate characteristics from 

input data while preserving its capacity for 

generalization. Utilizing a sequential structure 

facilitates the smooth and effective transmission of 

information across various hierarchical levels, thereby 

leading to developing deep learning models that are 

both efficient and amenable to training. 

 

 
Figure 6. Performance Accuracy and Loss VGG16 

 

The performance of the VGG16 model is 

depicted in Figure 6, exhibiting an accuracy rate of 

96.28% and a loss value of 0.1141. The model's 

classification accuracy, which stands at an impressive 

96.28%, demonstrates its proficiency in accurately 

categorizing test data. In the present context, the 

observed low loss value of 0.1141 indicates the 

model's predictive accuracy concerning the accurate 

labels. A low loss value in this framework signifies the 

model's efficacy in mitigating prediction errors 

throughout the training phase. The graph depicts the 

model's stability and accuracy in classification tasks, 

demonstrating that the VGG16 model can comprehend 

and generalize intricate data patterns. Consequently, it 

yields dependable and consistent outcomes in 

classification endeavors. 

 
Table 1. Training Accuracy and loss VGG16 

Epoch Acc Val Acc Loss Val Loss 

25 0.9173 0.9167 0.2421 0.3250 

50 0.9415 0.8438 0.1575 0.7384 

75 0.9572 0.0885 0.3159 0.9375 

100 0.9628 0.9062 0.0929 0.4130 

 

Table 1 shows VGG16 model training results from 

four epochs. First epoch (25) training accuracy was 

91.73%, validation accuracy 91.67%. Although the 

results are good, the slight difference between training 

and validation accuracy suggests the model did not 

overfit early on. The second epoch (50) saw training 

accuracy rise to 94.15% and validation accuracy fall to 

84.38%. This may indicate that the model is adapting too 

well to training data, which can hurt performance on new 

data. Training accuracy rose to 95.72% in the third epoch 

(75), but validation accuracy plummeted to 8.85%. This 

indicates that the model needs to be more balanced, in 

which excessive detail is extracted from the training data 

and fails to represent the new data accurately. In the final 

epoch (100), training accuracy was retained at 96.28%, 

and validation accuracy rose to 90.62%. However, the 

training-validation accuracy gap remains high, 

indicating difficulties in generalizing the model to new 

data. During training, loss values match accuracy. 

Significant loss value changes often mean model 

behavior with training and validation data. These 

training results help evaluate and improve model 

performance, including overfitting and generalization. 

 

3.3. Experiment VGG19 

 
Figure 7. VGG19 Architecture 

 

Figure 7, the neural network employed in this 

study is a sequential model that adopts the VGG19 

architecture. Each layer of the VGG19 network 

contributes to the hierarchical extraction of features. 

The resulting shape of the model's final output is 

(None, 9, 9, 512), and the total number of parameters 

in this model is 20,024,384. Following the 

convolutional layer, the spatial dimension is reduced 

by implementing average pooling. Subsequently, a 

dropout layer is employed to mitigate the risk of 

overfitting. The layer produces an output with 

dimensions (None, 512), which is later linked to dense 

layers: dense_2 and dense_3. These dense layers have 

525,312 and 5,125 parameters, respectively. The 

ultimate output layer consists of 5,125 parameters 

responsible for generating predictions made by the 

model. The model under consideration encompasses 

20,554,821 parameters, which can be further 

categorized into 9,969,669 trainable parameters and 

10,585,152 non-trainable parameters. Trainable 

parameters contain weights and biases that undergo 

updates during the training process, whereas non-

trainable parameters refer to those parameters that 

remain fixed within the VGG19 architecture. The 

architecture possessing notable parameters provides 

the capability to comprehend and extract intricate 

features from input data, thereby enabling the 
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development of deep learning models that exhibit 

robustness and efficacy in classification tasks. 

 

 
Figure 8. Performance Accuracy and Loss VGG19 

 

The performance of the VGG19 model is 

illustrated in Figure 8. The model achieved an accuracy 

of 97.07% and a loss value of 0.1465. The model's 

notable accuracy rate of 97.07% indicates its capacity to 

categorize test data accurately. In contrast, the model's 

accuracy concerning the actual labels is demonstrated 

by the low loss value of 0.1465, which suggests that the 

VGG19 model effectively mitigates prediction errors 

throughout the training phase. The stability and 

accuracy of the model's classification operations are 

depicted in this graph, which demonstrates low loss 

values and high accuracy. These outcomes indicate that 

VGG19 can comprehend and extrapolate intricate 

patterns in data. The model's performance indicates that 

VGG19 is a dependable and precise instrument for 

classification tasks, as it accurately predicts labels from 

the test data provided. 

 
Table 2. Training Accuracy and loss VGG19 

Epoch Acc Val Acc Loss Val Loss 

25 0.8407 0.8125 0.4389 0.5942 

50 0.9143 0.8958 0.2938 0.3423 

75 0.9595 0.9271 0.1703 0.4581 

100 0.9707 0.9062 0.1465 0.5811 

 

Four main phases of insect classification training 

are completed in epochs. Initial model accuracy was 

84.07% on training data and 81.25% on validation data 

after 25 epochs. The model's insect identification 

accuracy is good but can be better. After 50 epochs, 

the second phase increased accuracy to 91.43% on 

training data and 89.58% on validation data. This 

shows that the model is learning insect patterns and 

features, improving results on new data. After 75 

epochs, training data accuracy reached 99.95%, and 

validation data reached 92.71% in the third phase. This 

improvement shows that the model can recognize the 

dataset's insect variety and complexity accurately. In 

the fourth phase, after 100 epochs, validation accuracy 

dropped to 90.62%, while training accuracy reached 

97.07%. This may indicate overfitting, where the 

model overfits training data and undergeneralizes 

validation data. Understanding and overcoming 

overfitting requires more research. This insect 

classification training shows how models have 

evolved to realize insect characteristics, suggesting 

that entomology and other related fields may use it for 

insect identification and classification. 

3.4. Discussion  

The sequential model is a deep learning 

architecture based on VGG16, a hierarchical feature 

extraction convolutional neural network. 

Convolutional layers and average pooling consolidate 

information in the 14,714,688-parameter model, 

which outputs (None, 9, 9, 512). A dropout layer 

randomly deactivates neurons to reduce overfitting. 

Two densely connected layers, dense and dense_1, 

abstract features to leave an output layer with 5,125 

prediction parameters. The model's 15,245,125 

parameters balance complexity and efficacy for robust 

generalization. Performance shows test data 

categorization proficiency with 96.28% accuracy and 

0.1141 loss. Four epochs of training show overfitting 

issues. 

In contrast, the 20,024,384-parameter VGG19 

model uses average pooling and dropout layers. An 

output layer with 5,125 parameters results from 

hierarchical feature extraction by dense_2 and 

dense_3. The model's 97.07% accuracy and 0.1465 

loss indicate accurate categorization. With 20,554,821 

parameters, the model's performance suggests 

classification accuracy. Over four phases and 100 

epochs, the insect classification training shows the 

model's evolution in recognizing intricate insect 

patterns. The drop in validation accuracy suggests 

overfitting despite high training accuracy. 

Understanding and mitigating these challenges is 

essential for deploying the model in entomology and 

related fields, enabling accurate insect identification 

and classification. 

This study hypothesizes that hierarchical feature 

learning neural network models like VGG16 and 

VGG19 can recognize and classify insects from input 

data. This study aims to develop a model that can 

effectively discern insects while simultaneously 

considering the trade-off between complexity and 

generalizability. This research is vital because rapid 

and accurate insect identification can improve 

ecosystem and biodiversity understanding in 

entomology and related fields. The research results are 

promising, but many unanswered questions, including 

model overfitting and generalization to new data. 

Thus, future research can improve the model to avoid 

overfitting, explore more advanced neural network 

architectures, and develop more representative 

datasets to improve automatic insect identification 

results. Image processing and artificial intelligence 

could be used in entomology research to conserve 

biodiversity and better understand ecosystems. 

4. CONCLUSION 

The primary objective of this study is to construct 

and assess neural network models that are founded on 

the VGG16 and VGG19 architectures. These models 

will be utilized to identify and categorize insects by 

leveraging hierarchical features. The findings of the 

study indicate that these models exhibit a 

commendable degree of accuracy in the task of insect 

identification. Nevertheless, it is imperative to address 
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additional concerns such as the issues of overfitting 

and the ability to generalize to novel data. Subsequent 

investigations may direct their attention towards 

enhancing the model's precision, investigating more 

intricate structures, and constructing datasets that are 

more representative in order to enhance the 

dependability of insect identification. The significance 

of this study resides in its potential to enhance 

comprehension of ecosystems and biodiversity by 

means of expedited and precise insect identification. 

The model exhibits a notable capacity to accurately 

identify insects, thereby holding significant promise in 

facilitating entomological research and promoting the 

conservation of biodiversity. The amalgamation of 

image processing technology and artificial intelligence 

has the potential to make a substantial impact on 

comprehending ecosystems in their entirety and 

comprehending the significance of insects within these 

ecosystems. Hence, this study not only facilitates a 

deeper comprehension of insects but also establishes a 

basis for the advancement of more efficient insect 

identification techniques in subsequent research 

endeavors. 
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