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Abstract 

 

The accurate diagnosis of sleep disorders is crucial for effective treatment and management, yet current methods 

often rely on subjective assessments and are not always reliable. This research examines the efficacy of various 

neural network architectures, including dense networks, convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and innovative hybrid models, in predicting sleep disorders from structured health data. Our 

study focuses on comparing the performance of these models using metrics such as accuracy, precision, recall, and 

F1 score across a dataset comprising 400 individuals with detailed sleep and lifestyle data. Our findings 

demonstrate that while traditional models like dense networks and CNNs for structured data yield robust results, 

hybrid models, particularly the CNN-Transformer, significantly outperform others. This model effectively 

integrates convolutional layers with Transformer’s attention mechanisms, excelling in handling complex data 

interactions and providing superior predictive accuracy with an F1 score and accuracy reaching as high as 0.91. 

Conversely, RNN models, designed to capture temporal data dependencies, showed less efficacy, underscoring 

the importance of model selection aligned with data characteristics. This suggests that for datasets not exhibiting 

strong temporal features, models leveraging spatial relationships or advanced attention mechanisms are more 

suitable. This study not only advances our understanding of neural network applications in medical diagnostics 

but also highlights the potential of hybrid models in enhancing diagnostic accuracy. These insights could lead to 

significant improvements in the early detection and treatment of sleep disorders, thereby enhancing patient 

outcomes and contributing to the broader field of medical informatics. 
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1. INTRODUCTION  

In recent years, the prevalence of sleep disorders 

has increasingly become a concern, affecting public 

health significantly [1]–[3]. Disorders such as 

insomnia and sleep apnea not only degrade 

individuals' quality of life but are also linked with 

various chronic diseases, including cardiovascular 

diseases, diabetes, and obesity [4]–[6]. Traditional 

methods for monitoring and analyzing sleep patterns 

typically rely on subjective self-reports and clinical 

observations, which are often inaccurate and 

cumbersome [7]–[9]. However, the rise of machine 

learning (ML) and deep learning (DL) technologies 

offers a promising avenue for revolutionizing the field 

of sleep research by enabling more precise and 

insightful analysis of sleep health data [10]–[12]. 

Extensive documentation exists in the literature 

on the exploration of sleep patterns through data-

driven approaches. Techniques ranging from Support 

Vector Machines (SVMs) to Random Forests have 

been utilized to classify sleep stages from 

polysomnography data [13]–[15]. More recently, 

advanced deep learning models, including 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) variants [16], 

have emerged as powerful tools for uncovering 

complex patterns, and especially in sleep-related data 

[17]. These models have shown a capacity to 

significantly enhance accuracy and efficiency over 

traditional statistical methods, adeptly managing large 

datasets enriched with multiple input variables [18]. 

The escalating global incidence of sleep disorders and 

their severe health repercussions underscore the 

urgency to advance research in this domain [19]. 

https://creativecommons.org/licenses/by/4.0/
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Accurate diagnosis and effective treatment of sleep 

disorders are critically dependent on the capability to 

analyze and predict individual sleep patterns and 

disturbances accurately [20]. Traditional diagnostic 

methods, heavily reliant on direct observation and 

patient self-reporting, demand considerable resources 

and are prone to inaccuracies [21]. This situation 

underscores a critical need for more sophisticated, 

automated analytical tools [22]. 

The cutting edge of sleep research is defined by 

hybrid neural network models that combine the 

capabilities of both CNNs and RNNs, aiming to 

harness their respective strengths. CNNs excel in 

extracting spatial hierarchies from data, suitable for 

processing time-series inputs like those prevalent in 

sleep data. In contrast, RNNs are particularly effective 

in capturing temporal dependencies and sequences, 

essential for understanding patterns over time. 

Moreover, Transformer models, which utilize self-

attention mechanisms, are also gaining popularity for 

their ability to process sequential data without the 

limitations inherent to traditional RNNs, offering 

potentially superior performance in sequence 

modeling tasks. The principal aim of this research is to 

develop and assess the effectiveness of hybrid neural 

network models in predicting sleep disorders based on 

lifestyle and physiological data. While existing studies 

have often explored isolated aspects of sleep using 

either CNNs or RNNs, they rarely combine these 

approaches in a cohesive model. This research gap 

highlights an opportunity where the synergistic 

potential of these models has not been fully explored 

in a unified framework to analyze sleep health data 

comprehensively. Additionally, most current models 

do not sufficiently incorporate lifestyle factors such as 

physical activity and stress levels, which are crucial for 

a holistic understanding of sleep patterns and 

disorders. 

This research intends to fill these gaps by 

implementing and comparing two innovative hybrid 

models: a CNN-RNN model and a CNN-Transformer 

model. These models are uniquely designed to 

capitalize on the spatial feature extraction prowess of 

CNNs and the sequential modeling strengths of RNNs 

or Transformers, thereby providing a comprehensive 

analytical tool for sleep health. This integrative 

approach, which combines various data dimensions 

including physiological measurements and lifestyle 

factors into a coherent predictive framework, is a novel 

contribution to the field. The remainder of the article 

will detail the methodology employed, including data 

preparation, a description of the hybrid models, and 

the experimental setup for model training and 

validation. It will then present the experimental results, 

highlighting model performance metrics such as 

accuracy, precision, recall, and F1-score. Following 

this, the discussion will interpret the results, discuss 

their implications, and compare the performance of 

our proposed models with traditional models. The 

article will conclude by summarizing the research 

contributions and suggesting potential directions for 

future research in this vibrant area. 

2. RESEARCH METHOD 

The Sleep Health and Lifestyle Dataset used in 

this research comprises data from 400 individuals, 

with each record containing 13 different variables 

related to demographics, lifestyle, and physiological 

measurements. Key features include gender, age, 

occupation, sleep duration, quality of sleep, physical 

activity level, stress levels, BMI category, blood 

pressure, heart rate, daily steps, and the presence or 

absence of sleep disorders like Insomnia and Sleep 

Apnea. Dataset can be downloaded from [23]. 

2.1 Data Preprocessing 

In this research, data preprocessing forms a 

critical foundation for building reliable predictive 

models. The initial step involves a meticulous 

selection of features from the Sleep Health and 

Lifestyle Dataset, which contains a diverse array of 

variables related to personal demographics, lifestyle 

habits, and physiological measures. The objective here 

is to refine the dataset to ensure that only relevant 

variables are fed into the neural networks, thereby 

enhancing the models’ learning efficiency and 

predictive accuracy. 

First, feature selection, in this phase, the dataset 

was carefully curated to remove columns that do not 

contribute meaningfully to the predictive modeling 

process. For instance, 'Person ID' was eliminated as it 

represents arbitrary identifiers assigned to individuals, 

offering no intrinsic predictive value regarding sleep 

disorders. Similarly, 'Age_bin', a derived categorical 

variable representing age groups, was also excluded. 

This decision was based on preliminary analyses 

which suggested that direct age values provide more 

granular and thus potentially more insightful data for 

modeling than categorized age groups. The selection 

process ensures that the models are trained in features 

that directly impact sleep quality and disorders, such 

as sleep duration, physical activity levels, and stress. 

Furthermore, encoding categorial variable, The 'Sleep 

Disorder' column, which categorizes the type of sleep 

disorder diagnosed in individuals, was processed using 

label encoding. This technique converts categorical 

text data into a numerical format, assigning an integer 

to each category of disorder. For instance, 'None' may 

be encoded as 0, 'Insomnia' as 1, and 'Sleep Apnea' as 

2. This numeric transformation is crucial as it allows 

mathematical operations to be performed on the data 

during model training. 

Following label encoding, the numerically 

represented sleep disorders were further transformed 

into a one-hot encoded format. One-hot encoding is a 

process where each numerical value is converted into 

a binary vector with all zeros except for a single one at 

the index of the integer label. This is done to 

accommodate the neural network’s output layer, 

which is designed to predict the probability of each 



Airlangga, Evaluating Hybrid Neural Network …   60 

category. This method prevents the model from 

misinterpreting the ordinal numbers as having some 

form of hierarchical value, which is not the case with 

nominal categorical data. 

2.2 Model Development 

The concept of a "hybrid" in neural network 

terminology refers to the integration of distinct types 

of neural networks into a single cohesive model. Each 

type of network offers unique advantages: CNNs excel 

in processing data with spatial relationships, making 

them ideal for analyzing image data or structured 

datasets where inputs can be treated as images; RNNs 

are adept at handling sequential data, offering 

advantages when the order of data points is crucial, 

such as time-series analysis or speech recognition; 

Transformers provide significant improvements in 

handling long-range dependencies within data, 

surpassing traditional RNNs in tasks that require 

understanding the context from large input sequences. 

By combining these architectures, hybrid models 

can leverage the specific strengths of each network 

type, thereby enhancing the model's ability to 

understand complex, multifaceted data structures. For 

instance, in sleep disorder diagnostics, patient data 

often contains both structured data points (like heart 

rate or blood pressure readings) and sequential data 

(like changes in sleep quality over time), necessitating 

a model capable of interpreting these diverse data 

types effectively. In this study, we have developed 

three sophisticated hybrid neural network 

architectures to explore the predictive potential of 

different combinations of neural network technologies 

for diagnosing sleep disorders. Each model is tailored 

to leverage unique aspects of the data, focusing on 

extracting, and analyzing both spatial and temporal 

features to robustly predict sleep-related issues. 

 

 
Figure 1. CNN-RNN Hybrid Method 

 

The first of the proposed models as presented in 

figure 1 is the CNN-RNN Hybrid, which is designed 

to integrate the strengths of Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks 

(RNNs). The CNN layers at the beginning of the 

model serve to extract spatial features from the dataset. 

These layers use convolutional filters that effectively 

identify patterns and characteristics in the input data, 

which are spatially correlated. Following the CNN 

layers, MaxPooling is employed to reduce the 

dimensionality of the data. This reduction not only 

helps in reducing the computational load but also 

minimizes the risk of overfitting by abstracting the 

features and retaining only the most significant ones. 

The extracted features are then fed into Long 

Short-Term Memory (LSTM) units, a type of RNN 

that is particularly adept at processing sequences of 

data. LSTMs are designed to remember important 

information for long periods, which is critical in 

understanding the temporal dynamics of sleep 

patterns. This combination allows the model to capture 

both the immediate (spatial) and historical (temporal) 

dependencies inherent in the data, making it well-

suited for complex pattern recognition tasks like sleep 

disorder diagnosis. 

The second model as presented in the figure 2, the 

CNN-Transformer Hybrid, begins similarly with CNN 

layers that process the input data to capture spatial 

dependencies. These initial layers prepare the data by 

highlighting essential features before they are 

processed by the more complex components of the 

model. The transformative aspect of this model is the 

incorporation of a Transformer block, which follows 

the CNN layers. Transformers utilize attention 

mechanisms that allow the model to weigh and 

prioritize different parts of the input data based on their 

relevance to the task at hand. 

 

 
Figure 2. CNN-Transformer Hybrid Method 
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This mechanism is highly beneficial for modeling 

long-range interactions in data, as it can assess and 

connect distant points within the input sequence, 

thereby providing a more nuanced understanding. The 

multi-head attention within the Transformer can 

simultaneously process different subsets of the input 

data, offering a comprehensive overview that enhances 

the model's ability to make informed predictions. 

To provide a benchmark for evaluating the 

performance of the hybrid models, a deeper CNN 

model was also developed. This control model relies 

solely on multiple layers of CNNs, each designed to 

delve deeper into the extracted features from the 

preceding layer. By stacking more convolutional and 

pooling layers, the model can learn increasingly 

abstract representations of the input data. The deeper 

layers can identify complex patterns that simpler 

models might overlook. This architecture concludes 

with Flatten and Dense layers, which transform the 

multidimensional CNN outputs into a format suitable 

for classification. 

These three models collectively encompass a 

broad spectrum of neural network technologies, from 

basic CNNs to advanced combinations with RNNs and 

Transformers. Each model is expected to offer unique 

insights into the predictive analysis of sleep disorders, 

providing a robust comparative analysis that will help 

determine the most effective architectural approach for 

this type of data. The development of these models 

represents a significant step forward in applying 

artificial intelligence to improve diagnostic accuracies 

in the medical field, particularly in understanding and 

treating sleep disorders. 

In this research, data preprocessing forms a 

critical foundation for building reliable predictive 

models. The initial step involves a meticulous 

selection of features from the Sleep Health and 

Lifestyle Dataset, which contains a diverse array of 

variables related to personal demographics, lifestyle 

habits, and physiological measures. The objective here 

is to refine the dataset to ensure that only relevant 

variables are fed into the neural networks, thereby 

enhancing the models’ learning efficiency and 

predictive accuracy. 

2.3 Model Training and Evaluation for Sleep 

Disorder Prediction 

The training and evaluation of our models are 

pivotal components of this research, designed to 

rigorously test the robustness and generalizability of 

each neural network architecture developed for 

predicting sleep disorders. To achieve this, we adopted 

a systematic approach involving cross-validation, 

performance metric assessment, and comprehensive 

statistical analysis. 

The dataset was split into a training set (80%) and 

a testing set (20%) using stratified sampling to 

maintain the proportion of categories in both sets. In 

the field of machine learning, cross-validation is a 

critical methodology for validating model stability and 

generalizability. For this study, a 10-fold cross-

validation was employed, a technique where the 

dataset is split into ten separate subsets. Each subset 

serves as the test set during one iteration of the model 

evaluation, with the remaining subsets used for 

training. This method is instrumental in mitigating any 

biases that might arise from a singular division of data 

into training and test sets, as each subset is used 

exactly once as a test set. By rotating through different 

combinations of training and testing groups, the 

models are tested under varied conditions, enhancing 

the reliability of the evaluation results. 

After conducting the 10-fold cross-validation, the 

results from all iterations were aggregated to calculate 

the mean and standard deviation for each performance 

metric. These statistics are crucial as they offer a 

comprehensive view of the model's performance 

across different data subsets, indicating the 

effectiveness and stability of each model. 

Furthermore, a comparative analysis was performed to 

delineate the performance differences between the 

hybrid models and the traditional deeper CNN model. 

This comparison highlights the strengths and potential 

limitations of each architectural approach, providing 

valuable insights into their practical applications. The 

analysis not only underscores the models' predictive 

capabilities but also their robustness, ensuring that the 

findings are not merely artefacts of data splits or 

specificities of the dataset used. Through this 

meticulous training and evaluation process, the study 

aims to establish a solid foundation for the deployment 

of these models in real-world scenarios, contributing 

to the ongoing efforts to enhance diagnostic accuracies 

in the healthcare domain, especially in sleep health. 

In evaluating the effectiveness of each model 

comprehensively, a range of performance metrics was 

employed to gauge their capabilities thoroughly. 

Accuracy as presented in the equation 1 was utilized 

to measure the overall correctness of the model, 

reflecting the proportion of true result: both true 

positives and true negatives among the total cases 

examined. This metric serves as a fundamental 

indicator of the model's performance across the 

spectrum of test data. Precision as presented in the 

equation 2 was another critical metric, focusing on the 

purity of positive identifications. It is defined as the 

ratio of correctly predicted positive observations to the 

total predicted positives, thus highlighting the model's 

effectiveness in producing relevant results without 

overgeneralizing to incorrect classifications. 

 

Accuracy =
Number of Correct Predictions

Total Number of Predictions Made
 

 

(1) 

Precision =
True Positives

True Positives + False Positives
 

 

(2) 

 

Recall =
True Positives

True Positives + False Negatives
 

(3) 
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F1 Score = 2 ×
Precision × Recall

Precision + Recall
 

 

(4) 

Recall, or sensitivity, as presented in the equation 

3 is crucial for understanding the model’s ability to 

identify all relevant instances within the dataset. It is 

calculated as the ratio of correctly predicted positive 

observations to all observations in the actual class, 

offering insight into how well the model captures the 

necessary cases without neglecting those that are 

crucial. The F1 Score as presented in the equation 4 

integrate both precision and recall into a single 

measure by representing their harmonic mean. This 

metric is especially valuable in conditions where the 

data might be imbalanced, ensuring that the model's 

efficacy in identifying positive cases is balanced 

against its precision, thus avoiding a skew towards 

over-predicting minor classes or under-representing 

major ones. 

These metrics collectively provide a nuanced 

view of model performance, detailing not only the 

accuracy but also the models' capabilities in 

identifying and classifying various classes of sleep 

disorders correctly. Such comprehensive measurement 

assists in determining the practical applicability of the 

models in clinical settings, where accurate diagnosis is 

paramount. 

3. RESULT AND DISCUSSION 

This study offers a thorough assessment of 

various neural network architectures aimed at 

predicting sleep disorders, providing insights into their 

performance across multiple metrics: accuracy, 

precision, recall, and F1 score. The discussion 

explores the implications of these findings for the 

future of diagnostic models in sleep health, 

highlighting the comparative strengths and 

weaknesses of each tested model. 

 
Table  1. Deep Learning Comparison Results 

Model Avg 

Accuracy 

Avg 

Precision 

Avg 

Recall 

Avg 

F1 
Score 

Deeper CNN 0.91 0.92 0.91 0.91 

Complex RNN 0.84 0.86 0.84 0.83 
CNN-RNN Hybrid 0.87 0.89 0.87 0.87 

CNN-Transformer 

Hybrid 

0.91 0.92 0.91 0.91 

Dense Network 0.90 0.90 0.90 0.90 

CNN  0.90 0.90 0.90 0.90 

RNN  0.83 0.84 0.83 0.82 

 
As presented in the table 1, the dense network 

and CNN for structured data models both exhibited 

robust performance metrics, with accuracy, precision, 

recall, and F1 scores hovering around 0.90. This high 

level of effectiveness suggests that both models 

adeptly classify sleep disorders when structured data 

inputs are optimally processed. Interestingly, the 

similar performance metrics between these two 

models indicate that the additional convolutional 

layers in the CNN do not significantly outperform the 

simpler densely connected layers of the dense 

network. This could be due to the dataset's lack of 

complex spatial relationships that convolutional layers 

are best suited to capture. 

In contrast, the RNN model designed for 

structured data demonstrated lower performance, with 

accuracy and F1 scores around 0.83. This 

underperformance may be attributed to the RNN's 

emphasis on capturing temporal dynamics, which are 

potentially less relevant for this dataset. This finding 

suggests that for datasets not characterized by 

significant time-dependent behaviors, simpler or 

different architectural focuses may be more effective. 

The deeper CNN model showed an improvement over 

its simpler counterpart, achieving average accuracy 

and F1 scores of about 0.91. This suggests that deeper 

network architectures, which are capable of capturing 

more complex data patterns, might be necessary when 

dealing with intricate datasets. This model’s enhanced 

feature extraction capabilities seem to capture subtle 

nuances in the data, which simpler models may 

overlook. The complex RNN model performed 

similarly to the basic RNN model, with average scores 

around 0.84 for accuracy and 0.83 for F1. Like its 

simpler counterpart, the complex RNN is naturally 

suited to datasets with strong temporal correlations, 

which might not be dominant in this dataset, hence its 

comparatively lower performance. 

The hybrid models, particularly the CNN-

Transformer, achieved impressive results. The CNN-

RNN hybrid balanced performance with average 

scores around 0.87 across metrics, benefiting from the 

combined spatial and temporal feature extraction 

capabilities. However, the CNN-Transformer model 

was particularly effective, matching the highest scores 

with 0.91 on both accuracy and F1. This model's 

success indicates that the integration of convolutional 

layers with the global perspective provided by 

Transformer’s attention mechanisms can be highly 

beneficial, especially in complex datasets where 

relationships between features extend beyond simple 

sequences. The superior performance of the CNN-

Transformer hybrid model has significant implications 

for developing diagnostic tools for sleep disorders. 

This model's ability to efficiently handle complex 

patterns suggests that future diagnostic models could 

become more sophisticated and accurate, capable of 

interpreting intricate datasets effectively. Moreover, 

the relative ineffectiveness of the RNN models in this 

context underscores the importance of matching model 

architecture with the dataset's nature, particularly 

concerning the presence or absence of temporal 

dynamics. For non-sequential datasets, models that 

focus on spatial relationships or integrate attention 

mechanisms might be more effective. 

4. CONCLUSION 
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This study embarked on an exploration of various 

neural network architectures to identify the most 

effective models for predicting sleep disorders from 

structured data. Through rigorous evaluation of dense 

networks, CNNs, RNNs, and innovative hybrid 

models such as CNN-RNN and CNN-Transformer 

combinations, we have gained profound insights into 

the capabilities and performance of these advanced 

computational tools in the context of sleep health 

diagnostics. The findings reveal that while traditional 

dense networks and CNNs for structured data perform 

robustly, achieving high accuracy and other key 

performance metrics, the hybrid models, particularly 

the CNN-Transformer, demonstrate superior 

effectiveness. This model excels in integrating the 

strengths of convolutional layers with the advanced 

processing capabilities of Transformer’s attention 

mechanisms, thereby effectively handling the 

complexities inherent in medical datasets. 

The less-than-optimal performance of RNN 

models in this study highlights the importance of 

aligning model architecture with the specific 

characteristics of the dataset. This observation 

underscores the critical need for a nuanced approach 

to model selection, where the temporal or sequential 

nature of the data must be considered to maximize 

diagnostic accuracy and efficiency. Looking ahead, 

the potential of hybrid neural network architectures in 

transforming diagnostic processes is immense. The 

ability of these models to accurately predict sleep 

disorders can significantly aid in early diagnosis and 

treatment, ultimately improving patient outcomes. 

Moreover, the insights derived from this research can 

guide future studies in enhancing model 

interpretability and in exploring the integration of 

diverse and complex datasets. 
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