
JIKO (Jurnal Informatika dan Komputer) Accredited KEMENDIKBUD RISTEK, No.105/E/KPT/2022

Vol. 7, No. 2, August 2024, pp. 93-100 p-ISSN: 2614-8897

DOI: 10.33387/jiko.v7i2.8565 e-ISSN: 2656-1948

93

PRIMARY QUERY ANALYSIS ON SQL DATABASE RESTRUCTURING IN

GEOGRAPHIC INFORMATION SYSTEMS

Ridwan Ilyas*1, Wina Witanti2, Fildzah Syarafina3

1,2,3Department of Informatics, Faculty of Science and Informatics, Universitas Jenderal Achmad Yani, Cimahi,

Indonesia

Email: 1ilyas@lecture.unjani.ac.id, 2winawita0406@gmail.com, 3fildzahsyafarina20@if.unjani.ac.id

(Received: 5 August 2024, Revised: 8 August 2024, Accepted: 17 August 2024)

Abstract

Database restructuring is a crucial process aimed at enhancing data management and access efficiency by

modifying the existing data structure. This research focuses on improving a Geographic Information System (GIS)

for taxation by migrating and restructuring an inefficient and redundant database. The study conducts a

comparative performance evaluation of the old and restructured databases using benchmarking tests with varying

numbers of threads and ramp-ups. The results reveal a significant increase in average throughput (24.60%)

following the restructuring, indicating a substantial improvement in the database's data processing capacity.

However, there is also an average increase in response time (21.65%), suggesting a trade-off between enhanced

throughput and slower response times. This increase in response time indicates that while the system can handle

more data, it requires more time to process each query. Overall, the restructured database demonstrates enhanced

performance and efficiency, though further optimization is necessary to achieve consistent throughput across

different workloads and to mitigate the increased response times.

Keywords: SQL Database Restructuring, Geographic Information Systems (GIS), Taxation, Database

Performance, Benchmarking,

This is an open access article under the CC BY license.

*Corresponding Author: Ridwan Ilyas

1. INTRODUCTION (UPPERCASE, 10pt, bold)

Database restructuring is the process of altering or

modifying the existing data structure to meet new

requirements or enhance the efficiency of data

management and access. This process involves

manipulating data into more structured forms, such as

tables or documents, and can include merging,

splitting, or reformatting data. Additionally,

restructuring encompasses the ability to integrate data

from various sources and present it in a more

organized format, thereby facilitating easier data

access and analysis. This is crucial for addressing

issues arising from disorganized data structures and

allows for the exploitation of logical relationships

between information items. [1]. Data restructuring

within the context of databases is crucial because it

enhances data accessibility, allows for integration

from various sources, and adapts to new requirements.

Restructuring also optimizes system performance by

accelerating access and storage efficiency, and aids in

managing unstructured or semi-structured data. This

facilitates the exploitation of logical relationships

between information for in-depth analysis. Moreover,

it supports innovation and the development of new

applications more flexibly, leveraging data in more

innovative ways and increasing the value of existing

information. [1]. Currently, a geographic information

system for taxation has been developed with a

database migrated from the previous taxation system,

which was integrated with the geographic system. The

previous database was inefficient and had many data

redundancies, as well as an inefficient data structure.

A Geographic Information System (GIS) is an

essential technology used to store, manage, analyze,

and display data related to natural conditions. GIS

works with attribute data (detailed information) and

spatial data (geographical location). This system is

typically integrated with computers and other

networks to function effectively. [2]. Taxes are

contributions paid to the state that are obligatory for

those who are required to pay them, in accordance with

the law, without receiving any direct benefits. The

purpose of taxes is to finance general expenditures

https://creativecommons.org/licenses/by/4.0/

Ilyas et. al., Primary Query Analysis on SQL Database… 94

related to the state's duties, such as providing public

services, enforcing fair laws, and maintaining national

security and order.[3].

The implementation of a Geographic Information

System (GIS) enables tax authorities to manage

property data more efficiently through clear spatial

visualization, helping to identify properties that are

unregistered or improperly taxed. Additionally, GIS

improves the accuracy of tax assessments by

integrating geographical information such as location,

land size, and property value, thereby reducing errors

and enhancing the fairness of tax collection. This

implementation also contributes to increased revenue

by detecting properties that should be taxed but have

not yet been identified. Furthermore, spatial data from

GIS provides valuable information for better urban

planning, supporting decision-making related to

sustainable and efficient urban development. [4].

Previous research on restructuring has

demonstrated that the results of database restructuring

include several positive aspects, such as the ability to

perform DML operations that were previously

impossible, improved database performance through

schema optimization, and data alignment with

changing business needs. Additionally, restructuring

reduces the impact of changes on applications,

providing flexibility and adaptability of the system to

technological changes and user requirements, and

enhances data integrity by ensuring consistency and

accuracy. [5].

In previous research focusing on application

performance, it was stated that there are several

assessment points from the performance index,

namely that a low response time indicates good

application performance because it reflects the

system's ability to respond to user requests quickly.

[6]. A high throughput level indicates the system's

efficiency in completing more operations within the

same amount of time, reflecting the system's capability

to handle a high workload. [7]. Scalability evaluation

involves assessing the relationship between system

resources and workload growth, where a scalable

system can handle increased workloads without

experiencing significant performance degradation. [8].

By monitoring and evaluating these performance

indices, researchers can identify areas that need

optimization to improve the performance and

efficiency of web applications. [9]. Optimal

performance will enhance application access speed.

This increased speed will make users feel more

comfortable while using the application. [10].

Previous research focused on query optimization

in MySQL databases with the aim of improving data

retrieval response time through query restructuring.

This study evaluated eight clause models in SELECT

queries, including SELECT-SYMBOL OPERATOR,

IN, INNER JOIN-WHERE, DISTINCT, EXISTS,

NOT IN-LEFT JOIN, OR-UNION, and LIKE, to

determine their impact on query response time.

Additionally, the research examined how query

restructuring could be performed to enhance the

effectiveness and efficiency of queries compared to the

initial queries, and analyzed the response time of

optimized queries to assess the efficiency

improvements achieved. [11].

The JMeter application is a performance testing

tool that Highly flexible and capable of simulating

many users simultaneously, allowing for a

comprehensive evaluation of application performance.

[12]. JMeter's ability to adjust the number of users in

testing is highly beneficial for organizations as it can

replicate real-world application usage conditions [13].

During testing, JMeter is designed to measure

performance both at the user interface level and within

the system itself, providing in-depth insights into how

the application will function in a production

environment. [13]. JMeter provides several metrics for

assessment, such as latency, connect time, median,

standard deviation, and throughput, which can serve as

benchmarks for testing. [14].

Several previous studies have included in-depth

analyses of various aspects of database performance in

the context of Geographic Information Systems (GIS),

focusing on response time, throughput, standard

deviation of response time, error rate, and the size of

data received and sent. Response time, measured in

seconds, is a key metric for assessing how quickly the

system responds to service requests, where a short

response time indicates high efficiency and better user

satisfaction, while a long response time may signal

performance issues. [15]. The research also evaluates

the minimum and maximum response times in

distributed database systems (DDBS) to ensure that all

replicas are updated promptly. [16]. Additionally, the

standard deviation of response time is measured to

assess the variability in response times, which helps in

understanding the consistency of system performance.

[17]. Error rates, including mean squared error and

maximum error rate, are analyzed to assess the

accuracy of estimation methods in depicting the

statistical profile of the system.

[18] througput, which measure how many queries

can be executed per second, serves as a key indicator

of the system's efficiency in handling high workloads.

[19]. The amount of data received and sent, as well as

the average byte size, are also measured to provide an

overview of communication activity and data access

patterns within the database, as well as to evaluate the

efficiency of the SQL queries used.[20][21].

2. RESEARCH METHOD

Describe This research was conducted with

testing stages as shown in Figure 1. Prior to testing,

several preparation steps were necessary to ensure

accuracy and reliability. The final stage involved a

thorough analysis of the results, which were obtained

from benchmarking outcomes. This comprehensive

approach ensured that the data gathered was robust and

provided meaningful insights into the database

performance.

Ilyas et. al., Primary Query Analysis on SQL Database… 95

2.1 Existing Databse

The existing database serves as the primary focus

of this research (see Table 1). This database, which is

already in use, becomes the target for analysis and

evaluation to identify deficiencies and potential

performance improvements. At the initial stage of the

research, the existing database will be migrated to a

local host environment to separate it from the active

host, ensuring that the analysis can proceed without

disrupting the ongoing system operations. Once the

migration is complete, the structure and performance

of the database will be thoroughly examined to

uncover issues such as redundancy, inconsistencies,

and undesirable data dependencies. This detailed

analysis aims to highlight areas needing enhancement

and to provide a foundation for optimizing database

performance.

Table 1. Data Existing Database

No Component Number

1 Table 51

2 Row data 625,589
3 Row data/table 12266.45

4 Table null 3
5 Attribute 247

6 Average: Attribute/table 4.84

2.2 Benchmarking testing

In the benchmarking phase, researchers use pre-

designed scenarios to evaluate the database

performance based on threadsand ramp-up variables.

A threadsrefers to the smallest unit of execution in

processing that allows multiple tasks to be performed

simultaneously within an application. Meanwhile,

ramp-up refers to the amount of workload or

transactions sent to the database at a given time.

Researchers conduct the evaluation with various

combinations of threadscounts and ramp-up levels,

specifically 100, 200, and 300 threads, and 200, 400,

and 600 ramp-ups. The testing utilizes a single primary

query employed in the system.

The query is used to calculate the total Tax Object

Selling Value (NJOP) for each tax object by

considering both the land value and the building value.

This process is carried out through several subqueries

that separately compute the land NJOP and the

building NJOP based on area and the corresponding

NJOP per square meter. The results from these two

subqueries are then combined and summed to obtain

the total NJOP for each tax object.

Figure 1. database testing flow

Query1: Total NJOP per Property Query

SELECT nomor_objek_pajak, SUM(njop) AS njop FROM (

 SELECT nomor_objek_pajak, njop FROM (

 SELECT nomor_objek_pajak,

 luas_bumi * njop_bumi.njop_per_meter AS njop FROM objek_pajak,

 njop_bumi

 WHERE kode_kelas_tanah = njop_bumi.kode_kelas_bumi) as njbumi

 UNION ALL SELECT nomor_objek_pajak, njop FROM (

 SELECT nomor_objek_pajak,

 luas_bangunan * njop_bangunan.njop_per_meter AS njop FROM objek_pajak,

 njop_bangunan

 WHERE objek_pajak.kode_kelas_bangunan = njop_bangunan.kode_kelas_bangunan)

 AS njopbangunan

) AS jj GROUP BY nomor_objek_pajak;

Ilyas et. al., Primary Query Analysis on SQL Database… 96

Re-Structuring Database

In the database restructuring phase, this stage

involves improving and optimizing the existing

database structure to enhance efficiency, performance,

and scalability. This process includes reorganizing

tables and indexes to ensure that the database meets

the needs effectively. Through this stage, redundancy

can be eliminated, data integrity improved, and query

response times accelerated, thereby supporting

existing operations.

2.3 New Database

In the new database phase, researchers have made

improvements from the previous stage, having

undergone a restructuring process. The metadata for

the new database is provided in Table 2.

This table outlines the key characteristics of the

new database. It shows that the database consists of 51

tables with a total of 626,148 rows. On average, each

table contains approximately 12,277 rows. The

database includes 247 attributes, with an average of

about 4.84 attributes per table. Additionally, there are

3 tables that contain null values. These metrics provide

insights into the structure and complexity of the

restructured database.
Table 2. Data New Database

No Component Number

1 Table 51

2 Row data 626,148

3 Row data/table 12277.41176

4 Table null 3

5 Attribute 247

6 Average: attribute/table 4.84

2.3 Database testing

In the new database benchmarking phase,

researchers tested the database that had been improved

through data cleaning and normalization processes.

This testing was conducted using the same scenarios

as in the previous stage to ensure result consistency.

The two main outcomes measured in this phase are the

average response time and average throughput. The

average response time measures how quickly the

database can respond to a given query, while the

average throughput measures the number of

transactions or operations that the database can process

within a specific period.

3. RESULT AND DISCUSSION

This section presents the results of the research

conducted to evaluate the performance of the database

after undergoing the improvement process. The data

obtained from the benchmarking phase are used to

measure and compare the average response time and

throughput before and after optimization. These

results are detailed in the following section, providing

a clear picture of the performance improvements

achieved and identifying areas that still require further

attention.

3.1 Existing Database

In this phase of testing the existing database, the

researchers obtained results from the tests conducted

using the pre-designed scenarios. The results of the

testing under Scenario 1 are detailed in Table 3. This

table shows various performance metrics for different

threadscounts: 100, 200, and 300 threads. For instance,

the average response time, minimum and maximum

response times, standard deviation of response times,

error percentage, average throughput, amount of data

received, and average byte size are provided for each

threads count. The data in Table 3 to 5 provide insights

into the database's performance under the specified

conditions, allowing for a comparison of how different

threads configurations impact performance metrics.

Table 3. Testing of the Old Database Scenario 1

Aspect skenario 1 (200 rumps up)

100

threads

200

threads

300

threads

Database

Performance

Average Response
Time

1953 1344 1342

Minimum Response

Time
1580 737 737

Maximum Response

Time
3137 3137 3137

Standard Deviation of
Response Time

153.33 429.95 355.78

Error Percentage 0.00% 0.00% 0.00%
Throughput
Average Throughput 0.50034 0.17315 0.2464
Amount of Data
Received

907.1 313.92 446.72

Amount of Data Sent 0 0 0
Average Byte Size 1856479 1856479 1856479

Table 4. Testing Result of the Old Database Scenario 2

Aspek skenario 2 (400 rumps up)

100

threads

200 threads 300

threads

Database

Performance

Average Response

Time

1328 1298 1266

Minimum Response
Time

737 737 737

Maximum Response

Time

3137 3137 3137

Standard Deviation

of Response Time

342.83 315.29 288.15

Error Percentage 0.00% 0.00% 0.00%
Throughput

Average Throughput 0.21967 0.24192 0.27113

Amount of Data
Received

398.26 438.59 491.55

Amount of Data

Sent

0 0 0

Average Byte Size 1856479 1856479 1856479

Ilyas et. al., Primary Query Analysis on SQL Database… 97

Table 5. Testing Result of the Old Database Scenario 3

Aspek skenario 3 (600 rumps up)

100

threads

200

threads

300

threads

Database Performance

Average Response Time 2085 1344 2082
Minimum Response

Time

1098 737 1098

Maximum Response
Time

3004 3137 3004

Standard Deviation of

Response Time

200.93 429.95 146.99

Error Percentage 0.00% 0.00% 0.00%

Throughput

Average Throughput 0.16777 0.17315 0.21411

Amount of Data

Received

304.16 313.92 388.18

Amount of Data Sent 0 0 0

Average Byte Size 1856479 1856479 1856479

Based on the test results, the data indicates that the

average response time generally improves with an

increase in the number of threads, suggesting

enhanced system efficiency. Specifically, as the

number of threads increased from 100 to 300, the

average response time decreased from 1953

milliseconds to 1342 milliseconds, reflecting better

performance. However, the average throughput

exhibits variability and does not consistently increase

with the number of threads, with values ranging from

0.50034 for 100 threads to 0.2464 for 300 threads. This

inconsistency suggests that there is room for further

optimization to handle the number of operations per

second more consistently across different workload

levels. Despite improvements in response time, the

variation in throughput highlights the need for

additional adjustments to achieve stable performance

across various threads counts.

3.2 Re-structuring Database

The database restructuring phase has produced a

new database structure that aligns with the system's

requirements (see Table 6 to 8). The following are

some of the tables that have been restructured. This

restructuring ensures that the database is optimized for

performance, efficiency, and scalability, addressing

previous inefficiencies and improving overall data

management
Table 6. Information Schema Table Kelurahan

No Attribute Data Type

Before Length After Length

1 kode_kelura

han

varchar 200 char 3

2 nama_kelur

ahan

char 50 varchar 14

3 kecamatan char 50 varchar 14

Table 7. Information Schema Table Kecamatan

No Attribute Data Type

Before Length After Length

1 kode_kecam
atan

varchar 150 char 3

2 nama_keca

matan

varchar 150 varchar 14

Table 8. formation Schema Table Faktor Pengurang

No Attribute Data Type

Before Length After Length

1 id_faktor int 11 int 11

2 nomor_obje
k_pajak

varchar 50 char 20

3 faktor_peng

urang

double double

4 date_created datetim
e

 datetim
e

5 date_update

d

datetim

e

 datetim

e

3.3 New Database dan Benchmark Testing

After completing the previous stages, the database

is re-evaluated in this phase following the changes.

The following are the results obtained after these

modifications (see Table 9 to 11). This evaluation

provides insights into the impact of the changes on the

database's performance and efficiency. It highlights

improvements as well as any areas that may still

require further adjustment. The results offer a

comprehensive view of the database’s current status

post-optimization.

From the evaluation results, the average response

time decreased as the number of threads increased

across all scenarios, indicating improved system

efficiency in handling larger workloads. Meanwhile,

the average throughput generally increased with the

number of threads in some scenarios, although it was

not consistent in all scenarios. This suggests that the

system becomes faster in responding to requests with

increased workloads. This analysis was conducted

using the following equation 1:

%𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑛𝑒𝑤 𝑣𝑎𝑙𝑢𝑒 − 𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒
 𝑥100 (1)

Table 9. Testing of the New Database Scenario 1

Aspect Scenario 1 (200 rumps up)

100

threads

200

threads

300 threads

Database

Performance

Average Response

Time

1824 2102 2143

Minimum Response
Time

1335 1098 1098

Maximum Response

Time

3137 3004 3004

Standard Deviation of

Response Time

173.5 161.1 162.57

Error Percentage 0.00% 0.00% 0.00%

Throughput

Average Throughput 0.2428 0.27009 0.35694

Amount of Data

Received

440.18 489.67 647.13

Amount of Data Sent 0 0 0

Average Byte Size 1856479 1856479 1856479

Ilyas et. al., Primary Query Analysis on SQL Database… 98

Table 10. Testing Result of the New Database Scenario 2

Aspek skenario 2 (400 rumps up)

100

threads

200

threads

300

threads

Database

Performance

Average Response
Time

2093 1885 1695

Minimum Response

Time

1098 703 703

Maximum
Response Time

3004 3004 3004

Standard Deviation

of Response Time

215.9 485.96 580.51

Error Percentage 0.00% 0.00% 0.00%

Throughput

Average

Throughput

0.24646 0.26439 0.30277

Amount of Data
Received

446.83 479.34 548.91

Amount of Data

Sent

0 0 0

Average Byte Size 1856479 1856479 1856479

Table 11. Testing Result of the New Database Scenario 3

Aspek skenario 3 (600 rumps up)

100

threads

200

threads

300

threads

Database

Performance

Average Response
Time

1633 1432 1328

Minimum Response

Time

647 646 644

Maximum Response
Time

3004 3004 3004

Standard Deviation of

Response Time

608.45 666.28 671.76

Error Percentage 0.00% 0.00% 0.00%

Throughput

Average Throughput 0.27354 0.25636 0.27364

Amount of Data

Received

495.92 464.77 496.1

Amount of Data Sent 0 0 0

Average Byte Size 1856479 1856479 1856479

The evaluation was conducted using two primary

metrics: average response time and average

throughput. Performance tests were carried out in three

different scenarios, each with varying numbers of

threads (100, 200, and 300) and ramp-up periods (200,

400, and 600). These tests aimed to measure the

databases' efficiency and capacity to handle different

levels of workload. By simulating various real-world

conditions, the tests provided insights into how the

databases perform under different stress levels. The

following section provides a comprehensive

comparative analysis of the average response time and

throughput across the different scenarios, highlighting

the performance improvements and trade-offs

observed after the restructuring process. The specific

calculations for each scenario are shown to provide a

clear understanding of the performance changes. This

analysis is crucial for identifying the benefits of the

restructuring process, such as enhanced data

processing capacity and potential drawbacks,

including increased response times under certain

conditions. Overall, the evaluation underscores the

importance of database optimization for achieving

balanced and efficient data management systems.

a. Average Response Time

Skenario 1:

• 100 threads: (
𝟏𝟖𝟐𝟒−𝟏𝟗𝟓𝟑

𝟏𝟗𝟓𝟑
) × 𝟏𝟎𝟎% = -6.61 %

• 200 threads: (
𝟐𝟏𝟎𝟐−𝟏𝟑𝟒𝟒

𝟏𝟑𝟒𝟒
) × 𝟏𝟎𝟎% = 56.40 %

• 300 threads: (
𝟐𝟏𝟒𝟑−𝟏𝟑𝟒𝟐

𝟏𝟑𝟒𝟐
) × 𝟏𝟎𝟎% = 59.69 %

Skenario 2:

• 100 threads: (
𝟐𝟎𝟗𝟑−𝟏𝟑𝟐𝟖

𝟏𝟑𝟐𝟖
) × 𝟏𝟎𝟎% = 57.61 %

• 200 threads: (
𝟏𝟖𝟖𝟓−𝟏𝟐𝟗𝟖

𝟏𝟐𝟗𝟖
) × 𝟏𝟎𝟎% = 45.22 %

• 300 threads: (
𝟏𝟔𝟗𝟓−𝟏𝟐𝟔𝟔

𝟏𝟐𝟔𝟔
) × 𝟏𝟎𝟎% = 33.89 %

Skenario 3:

• 100 threads: (
𝟏𝟔𝟑𝟑−𝟐𝟎𝟖𝟓

𝟐𝟎𝟖𝟓
) × 𝟏𝟎𝟎% = -21.68 %

• 200 threads: (
𝟏𝟒𝟑𝟐−𝟏𝟑𝟒𝟒

𝟏𝟑𝟒𝟒
) × 𝟏𝟎𝟎% = -36.22 %

• 300 threads: (
𝟏𝟑𝟐𝟖−𝟐𝟎𝟖𝟐

𝟐𝟎𝟖𝟐
) × 𝟏𝟎𝟎% = -51.47 %

b. Average Throughput

Skenario 1:

• 100 threads: (
𝟎.𝟐𝟒𝟐𝟖−𝟎.𝟓𝟎𝟎𝟑𝟒

𝟎.𝟓𝟎𝟎𝟑𝟒
) × 𝟏𝟎𝟎% = -51.47 %

• 200 threads: (
𝟎.𝟐𝟕𝟎𝟎𝟗−𝟎.𝟏𝟕𝟑𝟏𝟓

𝟎.𝟏𝟕𝟑𝟏𝟓
) × 𝟏𝟎𝟎% = 55.99 %

• 300 threads: (
𝟎.𝟑𝟓𝟔𝟗𝟒−𝟎.𝟐𝟒𝟔𝟒

𝟎.𝟐𝟒𝟔𝟒
) × 𝟏𝟎𝟎% = 44.86 %

Skenario 2:

• 100 threads: (
𝟎.𝟐𝟒𝟔𝟒𝟔−𝟎.𝟐𝟏𝟗𝟔𝟕

𝟎.𝟐𝟏𝟗𝟔𝟕
) × 𝟏𝟎𝟎% = 12.20 %

• 200 threads: (
𝟎.𝟐𝟔𝟒𝟑𝟗−𝟎.𝟐𝟒𝟏𝟗𝟐

𝟎.𝟐𝟒𝟏𝟗𝟐
) × 𝟏𝟎𝟎% = 9.29 %

• 300 threads: (
𝟎.𝟑𝟎𝟐𝟕𝟕−𝟎.𝟐𝟕𝟏𝟏𝟑

𝟎.𝟐𝟕𝟏𝟏𝟑
) × 𝟏𝟎𝟎% = 11.67 %

Skenario 3:

• 100 threads: (
𝟎.𝟐𝟕𝟑𝟓𝟒−𝟎.𝟏𝟔𝟕𝟕𝟕

𝟎.𝟏𝟔𝟕𝟕𝟕
) × 𝟏𝟎𝟎% = 63.04 %

• 200 threads: (
𝟎.𝟐𝟓𝟔𝟑𝟔−𝟎.𝟏𝟕𝟑𝟏𝟓

𝟎.𝟏𝟕𝟑𝟏𝟓
) × 𝟏𝟎𝟎% = 48.06 %

• 300 threads: (
𝟎.𝟐𝟕𝟑𝟔𝟒−𝟎.𝟐𝟏𝟒𝟏𝟏

𝟏𝟎.𝟐𝟏𝟒𝟏𝟏
) × 𝟏𝟎𝟎% = 27.80 %

c. Average Response Time Change

Percent Average =

(
−𝟔.𝟔𝟏+𝟓𝟔.𝟒𝟎+𝟓𝟗.𝟔𝟗+𝟓𝟕.𝟔𝟏+𝟒𝟓.𝟐𝟐+𝟑𝟑.𝟖𝟗−𝟐𝟏.𝟔𝟖+𝟔.𝟓𝟓−𝟑𝟔.𝟐𝟐

𝟗
)

= 21.65%

d. Average Throughput Change:

Percent Average =

(
−𝟓𝟏.𝟒𝟕+𝟓𝟓.𝟗𝟗+𝟒𝟒.𝟖𝟔+𝟏𝟐.𝟐𝟎+𝟗.𝟐𝟗+𝟏𝟏.𝟔𝟕+𝟔𝟑.𝟎𝟒+𝟒𝟖.𝟎𝟔+𝟐𝟕.𝟖𝟎

𝟗
)

= 24.60%

From the tests conducted, comparing the

performance of the old database with the new database

using two main metrics: average response time and

average throughput. Performance tests were carried

out in three different scenarios with varying numbers

of threads (100, 200, and 300) and ramp-ups (200, 400,

and 600). The following is the comparative analysis:

Average Response Time

Since the average percentage change in response

time is positive (21.65%), this indicates that, overall,

Ilyas et. al., Primary Query Analysis on SQL Database… 99

the average response time increased after the database

restructuring. This means that the time required to

respond to requests increased on average across all

scenarios and threads.

Average Throughput

With the average percentage change in throughput

also being positive (24.60%), this indicates that the

average throughput overall increased after the

database restructuring. This means that the amount of

data that can be processed in a given time period

increased on average across all scenarios and threads.

4. CONCLUSION

From the analysis results, it can be concluded that

the database restructuring resulted in a significant

increase in throughput with an average increase of

24.60%, indicating that the system's capacity to

process data increased overall. However, the

restructuring also caused an average increase in

response time of 21.65%, indicating that the time

required to process requests increased. Overall, while

the restructured database can process more data, it

comes with the compromise of increased time needed

to respond to requests.

5. REFERENCE

[1] G. O. Arocena and A. O. Mendelzon,

“Restructuring documents, databases, and webs,”

Theory Pract. Object Syst., vol. 5, no. 3, pp. 127–

141, 1999, doi: 10.1002/(SICI)1096-

9942(1999)5:3<127::AID-TAPO2>3.0.CO;2-X.

[2] G. Wiro Sasmito, “Penerapan Metode Waterfall

Pada Desain Sistem Informasi Geografis Industri

Kabupaten Tegal,” J. Inform. J. Pengemb. IT, vol.

2, no. 1, pp. 6–12, 2017, doi:

10.30591/jpit.v2i1.435.

[3] D. P. S. M. A. Yosi Yulia, Ronni Andri Wijaya,

“Pengaruh Pengetahuan Perpajakan, Kesadaran

Wajib Pajak, Tingkat Pendidikan Dan Sosialisasi

Perpajakan Terhadap Kepatuhan Wajib Pajak

Pada Umkm Dikota Padang,” Sist. Inf., vol. 1, no.

September, pp. 60–69, 2018, doi:

10.31933/JEMSI.

[4] A. Singh et al., “Designing Geographic

Information System Based Property Tax

Assessment in India,” Smart Cities, vol. 5, no. 1,

pp. 364–381, 2022, doi:

10.3390/smartcities5010021.

[5] E. Domínguez, J. Lloret, Á. L. Rubio, and M. A.

Zapata, “When and how to restructure a view-

based relational database (extended version),”

CEUR Workshop Proc., vol. 639, no. September,

pp. 137–150, 2010, doi: 10.1007/978-3-642-

15576-5.

[6] I. Y. Andhica and D. Irwan, “Performa Kinerja

Web Server Berbasis Ubuntu Linux Dan Turnkey

Linux,” PIKSEL Penelit. Ilmu Komput. Sist.

Embed. Log., vol. 5, no. 2, pp. 68–78, 2018, doi:

10.33558/piksel.v5i2.269.

[7] Z. X. and X. W. and Y.-C. Tu, “Power-Aware

Throughput Control for Database Management

Systems,” Icac, pp. 315–324, 2013, [Online].

Available:

https://www.usenix.org/conference/icac13/techni

cal-sessions/presentation/xu_zichen

[8] I. Gorton, J. Klein, and A. Nurgaliev,

“Architecture Knowledge for Evaluating Scalable

Databases,” Proc. - 12th Work. IEEE/IFIP Conf.

Softw. Archit. WICSA 2015, pp. 95–104, 2015,

doi: 10.1109/WICSA.2015.26.

[9] Q. Wu and Y. Wang, “Performance testing and

optimization of J2EE-based web applications,”

2nd Int. Work. Educ. Technol. Comput. Sci. ETCS

2010, vol. 2, pp. 681–683, 2010, doi:

10.1109/ETCS.2010.583.

[10] M. Mardiana, “Implementasi User Satisfaction

Model Dalam Mengukur Kualitas Website,”

MATRIK J. Manajemen, Tek. Inform. dan

Rekayasa Komput., vol. 19, no. 2, pp. 266–272,

2020, doi: 10.30812/matrik.v19i2.711.

[11] O. M. I. Tavares, S. M. Rangkoly, S. B. Desy

Bawan, E. Utami, and M. S. Mustafa, “Analisis

Perbandingan Performansi Waktu Respons Kueri

antara MySQL PHP 7.2.27 dan NoSQL

MongoDB,” J. Teknol. Inf., vol. 4, no. 2, pp. 303–

313, 2020, doi: 10.36294/jurti.v4i2.1695.

[12] Apache, “Apache JMeter - Apache JMeterTM,”

2014. https://jmeter.apache.org/#:~:text=Apache

JMeter may be used,performance under different

load types.

[13] J. Wang and J. Wu, “Research on performance

automation testing technology based on JMeter,”

Proc. - 2019 Int. Conf. Robot. Intell. Syst. ICRIS

2019, pp. 55–58, 2019, doi:

10.1109/ICRIS.2019.00023.

[14] Apache Software Foundation, “Apache JMeter

Glossary.”

https://jmeter.apache.org/usermanual/glossary.ht

ml#:~:text=Throughput is calculated as requests,)

%2F (total time).

[15] K. D. Kang, J. Oh, and S. H. Son, “Chronos:

Feedback control of a real database system

performance,” Proc. - Real-Time Syst. Symp., no.

January 2008, pp. 267–276, 2007, doi:

10.1109/RTSS.2007.16.

[16] H. W. Maalouf and M. K. Gurcan, “Minimisation

of the update response time in a distributed

database system,” Perform. Eval., vol. 50, no. 4,

pp. 245–266, 2002, doi: 10.1016/S0166-

5316(02)00085-8.

[17] S. Sen, A. Dutta, A. Cortesi, and N. Chaki, “A

new scale for attribute dependency in large

database systems,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect.

Notes Bioinformatics), vol. 7564 LNCS, pp. 266–

277, 2012, doi: 10.1007/978-3-642-33260-9_23.

[18] M. V. Mannino, P. Chu, and T. Sager, “Statistical

Profile Estimation in Database Systems,” ACM

Ilyas et. al., Primary Query Analysis on SQL Database… 100

Comput. Surv., vol. 20, no. 3, pp. 191–221, 1988,

doi: 10.1145/62061.62063.

[19] O. W. Purbo, Sriyanto, Suhendro, R. A. Aziz, and

R. Herwanto, “Benchmark and comparison

between hyperledger and MySQL,” Telkomnika

(Telecommunication Comput. Electron. Control.,

vol. 18, no. 2, pp. 705–715, 2020, doi:

10.12928/TELKOMNIKA.v18i2.13743.

[20] N. Khamphakdee, N. Benjamas, and S. Saiyod,

“Performance Evaluation of Big Data Technology

on Designing Big Network Traffic Data Analysis

System,” Proc. - 2016 Jt. 8th Int. Conf. Soft

Comput. Intell. Syst. 2016 17th Int. Symp. Adv.

Intell. Syst. SCIS-ISIS 2016, no. November 2017,

pp. 454–459, 2016, doi: 10.1109/SCIS-

ISIS.2016.0103.

[21] J. L. Lo, L. A. Barroso, S. J. Eggers, K.

Gharachorloo, H. M. Levy, and S. S. Parekh,

“Analysis of database workload performance on

simultaneous multithreaded processors,” Conf.

Proc. - Annu. Int. Symp. Comput. Archit. ISCA,

pp. 39–50, 1998, doi: 10.1145/279361.279367.

