DATA MINING IMPLEMENTATION FOR DETECTION OF ANOMALIES IN NETWORK TRAFFIC PACKETS USING OUTLIER DETECTION APPROACH
Abstract
Full Text:
PDFReferences
Bhuyan MH, Bhattacharyya DK, Kalita JK. Network Traffic Anomaly Detection Techniques and Systems. Springer; 2017. 115-169 p.
Jyothsna V, Prasad KM. Anomaly-Based Intrusion Detection System. Intechopen. 2019;1–15.
Mohan L, Jain S, Suyal P, Kumar A. Data mining Classification Techniques for Intrusion Detection System. Proc - 2020 12th Int Conf Comput Intell Commun Networks, CICN 2020. 2020;351–5.
Chun-Hui X, Chen S, Cong-Xiao B, Xing L. Anomaly Detection in Network Management System Based on Isolation Forest. Proc - 2018 4th Annu Int Conf Netw Inf Syst Comput ICNISC 2018. 2018;56–60.
Sadaf K, Sultana J. Intrusion detection based on autoencoder and isolation forest in fog computing. IEEE Access. 2020;8:167059–68.
Shaaban AR, Abd-Elwanis E, Hussein M. DDoS attack detection and classification via Convolutional Neural Network (CNN). Proc - 2019 IEEE 9th Int Conf Intell Comput Inf Syst ICICIS 2019. 2019;233–8.
Budiarto EH, Erna Permanasari A, Fauziati S. Unsupervised anomaly detection using K-Means, local outlier factor and one class SVM. Proc - 2019 5th Int Conf Sci Technol ICST 2019. 2019;
Kaur P. Outlier Detection Using Kmeans and Fuzzy Min Max Neural Network in Network Data. Proc - 2016 8th Int Conf Comput Intell Commun Networks, CICN 2016. 2017;693–6.
Liu FT, Ting KM, Zhou ZH. Isolation-based anomaly detection. ACM Trans Knowl Discov Data. 2012;6(1):1–44.
Narayan D, Malony A, Louella C. Intrusion Detection System Using Data Mining Techniques. 2017;7(5):450–2.
Gurulakshmi K, Nesarani A. Analysis of IoT Bots against DDOS attack using Machine learning algorithm. 2018 2nd Int Conf Trends Electron Informatics. 2018;(Icoei):1052–7.
Hafid H. Investigasi Log Jaringan Untuk Deteksi Serangan Distributed Denial of Service ( Ddos ) Dengan Menggunakan Metode General Regression Neural Network. 2019.
Miah MO, Khan SS, Shatabda S, Farid DM. Improving Detection Accuracy for Imbalanced Network Intrusion Classification using Cluster-based Under-sampling with Random Forests. 1st Int Conf Adv Sci Eng Robot Technol 2019, ICASERT 2019. 2019;2019(Icasert):1–5.
Rastri Prathivi, Vensy Vydia. Analisa Pendeteksian Worm dan Trojan pada Jaringan Internet Universitas Semarang menggunakan Metode Klasifikasi pada Data Mining. J Transform. 2017;14(2):77–81.
Fibrianda MF, Bhawiyuga A. Analisis Perbandingan Akurasi Deteksi Serangan Pada Jaringan Komputer Dengan Metode Naïve Bayes Dan Support Vector Machine (SVM). J Pengemb Teknol Inf dan Ilmu Komput. 2018;II(9):3112–23.
Anwar S, Septian F, Septiana RD. Klasifikasi Anomali Intrusion Detection System (IDS) Menggunakan Algoritma Naïve Bayes Classifier dan Correlation-Based Feature Selection. J Teknol Sist Inf dan Apl. 2019;2(4):135.
Nivaashini M, Thangaraj P. A framework of novel feature set extraction based intrusion detection system for internet of things using hybrid machine learning algorithms. 2018 Int Conf Comput Power Commun Technol GUCON 2018. 2019;44–9.
Imam RM, Sukarno P, Nugroho MA. Deteksi Anomali Jaringan Menggunakan Hybrid Algorithm. e-Proceeding Eng. 2019;6(2):8766–87.
Larose DT and, Larose CD. Data Mining and Predictive Analytics. JohnWiley &Sons,Inc.; 2015.
Wireshark. Expert Information, Chapter 7. Advanced Topics [Internet]. [cited 2022 Jun 24]. Available from: https://www.wireshark.org/docs/wsug_html_chunked/ChAdvExpert.html
DOI: https://doi.org/10.33387/jiko.v6i2.6092
Refbacks
- There are currently no refbacks.