IMAGE CLASSIFICATION OF VINE LEAF DISEASES USING COMPLEX-VALUED NEURAL NETWORK

Irma Amanda Putri, Dwi Arman Prasetya, Tresna Maulana Fahrudin

Abstract


Leaf diseases are a serious challenge in the agricultural industry affecting crop quality and yield especially in grapevines. Early recognition and classification of grape leaf diseases is crucial to enable farmers to take appropriate preventive measures in maintaining the health of their crops. The research utilized an innovative approach based on Complex-Valued Neural Network (CVNN) to address the problem. Using Complex-Valued Neural Network (CVNN) this research seeks to identify and classify grape leaf diseases through a series of experiments. A total of 100 images divided into 4 classes namely Black Rot, ESCA, Leaf Blight, and Healthy were collected to train the model. The results show that the trained CVNN model successfully achieved a training accuracy of 100% and a testing accuracy of 97%, demonstrating excellent performance in classifying grape leaf diseases. This states that the proposed approach has great potential to be an effective tool in helping growers manage their vineyards more efficiently and effectively. The developed image processing method is expected to be applied in designing a system to perform image classification of diseases on grape leaves.

Full Text:

PDF

References


I. Y. Purbasari, B. Rahmat, dan C. S. Putra PN, “Detection of Rice Plant Diseases using Convolutional Neural Network,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1125, no. 1, hal. 012021, 2021, doi: 10.1088/1757-899x/1125/1/012021.

Nurlisa Aulia, I. Gede Susrama, dan I. Yulia Puspaningrum, “Sistem Pakar Diagnosa Penyakit Pencernaan Kucing Menggunakan Naïve Bayes Dan Certainty Factor,” J. Inform. dan Sist. Inf., vol. 2, no. 2, hal. 138–144, 2021, doi: 10.33005/jifosi.v2i2.347.

D. A. Prasetya, P. T. Nguyen, R. Faizullin, I. Iswanto, dan E. F. Armay, “Resolving the shortest path problem using the haversine algorithm,” J. Crit. Rev., vol. 7, no. 1, hal. 62–64, 2020, doi: 10.22159/jcr.07.01.11.

T. M. Fahrudin, P. A. Riyantoko, K. M. Hindrayani, dan E. M. Safitri, “An Introduction To Machine Learning Games And Its Application For Kids In Fun Project,” Int. J. Comput. Netw. Secur. Inf. Syst., vol. 2, no. 1, hal. 26–30, 2020, [Daring]. Tersedia pada: https://machinelearningforkids.co.uk

S. Chatterjee, P. Tummala, O. Speck, dan A. Nurnberger, “Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN,” 5th IEEE Int. Image Process. Appl. Syst. Conf. IPAS 2022, 2022, doi: 10.1109/IPAS55744.2022.10053060.

J. A. Barrachina, “Complex-Valued Neural Networks for Radar Applications,” 2022.

M. A. Hasan, Y. Riyanto, dan D. Riana, “Grape leaf image disease classification using CNN-VGG16 model,” J. Teknol. dan Sist. Komput., vol. 9, no. 4, hal. 218–223, 2021, doi: 10.14710/jtsiskom.2021.14013.

H. Zhang dkk., “An optical neural chip for implementing complex-valued neural network,” Nat. Commun., vol. 12, no. 1, hal. 1–11, 2021, doi: 10.1038/s41467-020-20719-7.

S. S. Simanjuntak, H. Sinaga, K. Telaumbanua, dan A. Andri, “Klasifikasi Penyakit Daun Anggur Menggunakan Metode GLCM, Color Moment dan K*Tree,” J. SIFO Mikroskil, vol. 21, no. 2, hal. 93–104, 2021, doi: 10.55601/jsm.v21i2.754.

J. Yang, H. Gu, C. Hu, X. Zhang, G. Gui, dan H. Gacanin, “Deep Complex-Valued Convolutional Neural Network for Drone Recognition Based on RF Fingerprinting,” Drones, vol. 6, no. 12, hal. 1–19, 2022, doi: 10.3390/drones6120374.

A. Septiarini, Rizqi Saputra, Andi Tejawati, dan Masna Wati, “Deteksi Sarung Samarinda Menggunakan Metode Naive Bayes Berbasis Pengolahan Citra,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, hal. 927–935, 2021, doi: 10.29207/resti.v5i5.3435.

J. A. Barrachina, C. Ren, G. Vieillard, C. Morisseau, dan J.-P. Ovarlez, “Theory and Implementation of Complex-Valued Neural Networks,” 2023, no. June, hal. 1–42. [Daring]. Tersedia pada: http://arxiv.org/abs/2302.08286

H. A. Jalab dan R. W. Ibrahim, “New activation functions for complex-valued neural network,” Int. J. Phys. Sci., vol. 6, no. 7, hal. 1766–1772, 2011, doi: 10.5897/IJPS11.105.

L. Yu, Y. Hu, X. Xie, Y. Lin, dan W. Hong, “Complex-Valued Full Convolutional Neural Network for SAR Target Classification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 10, hal. 1752–1756, 2020, doi: 10.1109/LGRS.2019.2953892.

A. Anhar dan R. A. Putra, “Perancangan dan Implementasi Self-Checkout System pada Toko Ritel menggunakan Convolutional Neural Network (CNN),” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 11, no. 2, hal. 466, 2023, doi: 10.26760/elkomika.v11i2.466.

P. Raghav, “Understanding of Convolutional Neural Network (CNN) — Deep Learning,” Medium, 2018.




DOI: https://doi.org/10.33387/jiko.v7i1.7809

Refbacks

  • There are currently no refbacks.