FORECASTING SALES USING SARIMA MODELS AT THE SINAR PAGI BUILDING MATERIALS STORE

Ahmad Adiib Aminullah, Mohammad Idhom, Wahyu Syaifullah Jauharis Saputra

Abstract


Sinar Pagi Building Materials Store faces the challenge of maintaining optimal stock levels of goods to avoid excess and understock, which affects customer satisfaction and operational efficiency. This study applies the Seasonal Autoregressive Integrated Moving Average (SARIMA) method to forecast sales in the store. Leveraging its ability to model seasonal patterns on historical sales data, various SARIMA models were analyzed and compared using the Akaike Information Criterion (AIC) and Root Mean Square Error (RMSE). The dataset is divided by a 95:5 ratio into training and testing sets for robust evaluation. The results show that the SARIMA model with SARIMA notation (p,d,q)(P,D,Q  has the best model value of (1,0,0) . This model is the most suitable model based on the lowest AIC value of 1245 and the lowest RMSE of 7,95 compared to other SARIMA models after model identification using the model looping test. For other models such as model (1,0,1)  and (0,0,1) , the AIC and RMSE values are greater, namely model (1,0,1)  with AIC 1246 and RMSE of 8,05, while model (0,0,1)  gets an AIC of 1252 and an AIC of 8,15 .The lower the AIC value, the better the model and the lower the RMSE value, the better the model. This shows a superior balance between model complexity and prediction accuracy. The model manages to capture seasonal patterns in sales data, providing a pretty good prediction framework. This study shows that the SARIMA (1,0,0)  model is effective in the accuracy of the sales forecasting process so that Sinar Pagi Building Materials Store can make more reliable sales predictions, which can help in inventory planning and marketing strategies

Full Text:

PDF

References


S. Suseno and Suryo Wibowo, “Penerapan Metode ARIMA dan SARIMA Pada Peramalan Penjualan Telur Ayam Pada PT Agromix Lestari Group,” J. Teknol. dan Manaj. Ind. Terap., vol. 2, no. I, pp. 33–40, 2023, doi: 10.55826/tmit.v2ii.85.

M. Romi, I. Apriliana, S. Wulandari, P. Studi, T. Industri, and U. M. Sidoarjo, “Masonry Concrete Sales Forecasting Using ARIMA and SARIMA Methods for Production Planning [ Peramalan Penjualan Beton Masonry Menggunakan Metode ARIMA Dan SARIMA Untuk Perencanaan Produksi ],” pp. 1–10, 1991.

W. Gunawan and M. Ramadani, “Analisa Perbandingan Penerapan Metode SARIMA dan Prophet dalam Memprediksi Persediaan Barang PT XYZ,” Fakt. Exacta, vol. 16, no. 2, pp. 88–97, 2023, doi: 10.30998/faktorexacta.v16i2.13803.

W. Stephany, A. S. Albadry, A. Sofa, and Tarjo, “Analisis Pengendalian Persediaan Barang Dagang Dalam Menunjang Kelancaran Transaksi Jual Beli,” J. Ekopendia, vol. 06, no. 1, pp. 171–193, 2021.

M. Idhom and S. M. Huda, “879-2916-1-Pb,” vol. XII, pp. 25–34, 2017.

M. A. Firmansyah, A. Panji Sasmito, and H. Zulfia Zahro’, “Aplikasi Forecasting Penjualan Bahan Bangunan Menggunakan Metode Trend Moment (Studi Kasus Di Ud. Hasil Bumi),” JATI (Jurnal Mhs. Tek. Inform., vol. 5, no. 2, pp. 526–533, 2021, doi: 10.36040/jati.v5i2.3759.

E. S. Putri and M. Sadikin, “Prediksi Penjualan Produk Untuk Mengestimasi Kebutuhan Bahan Baku Menggunakan Perbandingan Algoritma LSTM dan ARIMA,” Format J. Ilm. Tek. Inform., vol. 10, no. 2, p. 162, 2021, doi: 10.22441/format.2021.v10.i2.007.

I. L. Hakim, M. Sanglise, and C. D. Suhendra, “Analisis Peramalan Harga Telur Ayam Ras Dengan Menggunakan Metode SARIMA,” vol. 8, no. April, pp. 966–977, 2024, doi: 10.30865/mib.v8i2.7610.

N. E. Susanti, R. Saputra, and I. A. Situmorang, “Perbandingan Metode SARIMA, Double Exponential Smoothing dan Holt-Winter Additive dalam Peramalan Retail Sales Mobil Honda,” J. Sains Mat. dan Stat., vol. 10, no. 1, p. 58, 2024, doi: 10.24014/jsms.v10i1.26375.

D. A. Fajari, M. F. Abyantara, and H. A. Lingga, “Peramalan Rata-Rata Harga Beras Pada Tingkat Perdagangan Besar Atau Grosir Indonesia Dengan Metode Sarima (Seasonal Arima),” J. Agribisnis Terpadu, vol. 14, no. 1, p. 88, 2021, doi: 10.33512/jat.v14i1.11460.

A. S. Riyadi, I. P. Wardhani, and A. Perdana, “APLIKASI PERBANDINGAN PREDIKSI HARGA BITCOIN MENGGUNAKAN DEEP LEARNING DENGAN METODE ARIMA , SARIMA , LTSM DAN GRADIENT,” vol. 7, 2023.

H. Chhabra, “A Comparative Study of ARIMA and SARIMA Models to Forecast Lockdowns due to SARS-CoV-2,” Adv. Tech. Biol. Med., vol. 11, no. 1, pp. 1–12, 2023, doi: 10.35248/2379-1764.23.11.399.

S. Aktivani, “Uji Stasioneritas Data Inflasi Kota Padang,” Statistika, vol. 20, no. 2, pp. 83–90, 2020.

C. A. Melyani, A. Nurtsabita, G. Z. Shafa, and E. Widodo, “Peramalan Inflasi Di Indonesia Menggunakan Metode Autoregressive Moving Average (Arma),” J. Math. Educ. Sci., vol. 4, no. 2, pp. 67–74, 2021, doi: 10.32665/james.v4i2.231.

A. Juwanda et al., “Analisa Prediksi Penjualan Mobil dengan Metode Autoregressive Integrated Moving Average (ARIMA),” Semin. Nas. Mhs. Ilmu Komput. dan Apl. Jakarta-Indonesia, no. September, pp. 1–7, 2021, [Online]. Available: https://conference.upnvj.ac.id/index.php/senamika/article/view/1787

I. B. B. Mahayana, I. Mulyadi, and S. Soraya, “Peramalan Penjualan Helm dengan Metode ARIMA (Studi Kasus Bagus Store),” Inferensi, vol. 5, no. 1, p. 45, 2022, doi: 10.12962/j27213862.v5i1.12469.

S. Putri and A. Sofro, “Peramalan Jumlah Keberangkatan Penumpang Pelayaran Dalam Negeri di Pelabuhan Tanjung Perak Menggunakan Metode ARIMA dan SARIMA,” MATHunesa J. Ilm. Mat., vol. 10, no. 1, pp. 61–67, 2022, doi: 10.26740/mathunesa.v10n1.p61-67.

U. M. Sirisha, M. C. Belavagi, and G. Attigeri, “Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison,” IEEE Access, vol. 10, no. December, pp. 124715–124727, 2022, doi: 10.1109/ACCESS.2022.3224938.

N. S. Khoiriyah, M. Silfiani, R. Novelinda, and S. M. Rezki, “Peramalan Jumlah Penumpang Kapal di Pelabuhan Balikpapan dengan SARIMA,” J. Stat. dan Komputasi, vol. 2, no. 2, pp. 76–82, 2023, doi: 10.32665/statkom.v2i2.2303.

A. Agung Dwi Ramadhan and A. Fauzan, “Prediksi Nilai Ekspor Non Migas Di Jawa Barat Menggunakan Metode Seasonal Auto Regresif Integrated Moving Average (SARIMA),” Emerg. Stat. Data Sci. J., vol. 1, no. 1, pp. 10–19, 2023, doi: 10.20885/esds.vol1.iss.1.art2.

V. R. Prasetyo, H. Lazuardi, A. A. Mulyono, and C. Lauw, “Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 1, pp. 8–17, 2021, doi: 10.25077/teknosi.v7i1.2021.8-17.

L. I. Harlyan, E. S. Yulianto, Y. Fitriani, and Sunardi, “Aplikasi Akaike Information Criterion (AIC) pada Perhitungan Efisiensi Teknis Perikanan Pukat Cincin di Tuban, Jawa Timur,” Mar. Fish. J. Mar. Fish. Technol. Manag., vol. 11, no. 2, pp. 181–188, 2021, doi: 10.29244/jmf.v11i2.38550.




DOI: https://doi.org/10.33387/jiko.v7i2.8266

Refbacks

  • There are currently no refbacks.
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor