IMPLEMENTATION OF THE FUZZY TIME SERIES METHOD FOR FORECASTING BLOOD NEEDS IN THE INDONESIAN RED CROSS (PMI) MEDAN

Rina Syafiddini Harahap, Rakhmat Kurniawan R

Abstract


The primary issue faced by PMI (Indonesian Red Cross) about blood requirements is often associated with insufficient blood supplies to satisfy the demand of patients, particularly during emergencies or significant catastrophes such as natural calamities. Hence, it is essential to use appropriate methodologies to forecast blood requirements accurately and determine the quantity of blood bags required in the future. When forecasting calculations using fuzzy time series, the interval length is established at the start of the calculation procedure. The duration of the gap significantly affects the establishment of fuzzy associations, which in turn affects the difference in forecast computation outcomes. The investigation reveals that Group AB has the lowest Root Mean Square Error (RMSE) value of 136.90, indicating that your model demonstrates superior accuracy in predicting blood group AB compared to other blood groups. The RMSE score for Group O is 819.5, which suggests that your model's accuracy in predicting blood group O is lower compared to other blood groups

Full Text:

PDF

References


N. Y. Ritonga, N. T. A. Silalahi, N. M. N. Nugraha, and N. U. Usiono, “Menerapkan PHBS Dalam Kegiatan Jumbara di Pancur Batu,†Jurnal Ilmiah Kedokteran Dan Kesehatan, vol. 3, no. 1, pp. 146–153, Nov. 2023, doi:10.55606/klinik.v3i1.2271

Y. Suherman, “SISTEM APLIKASI BANK DARAH PADA PALANG MERAH INDONESIA PAYAKUMBUH,†Jurnal Sains Dan Informatika, vol. 3, no. 1, p. 22, Apr. 2017, doi: 10.22216/jsi.v3i1.2329.

Febriani, A., Melyanti, R., & Syahputra, R. W. 2020. Sistem Informasi Donor Darah Berbasis Android Pada Unit Transfusi Darah Palang Merah Indonesia (Utd PMI) Kota Pekanbaru. Jurnal Ilmu Komputer, 9(1), 11-19.

“Puspitasari, N., Prafanto, A., Ansyori, A., Wati, M., & Septiarini, A.,†Journal MIND Journal, vol. 2, no. 7, pp. 188–203, 2022, [Online]. Available: https://doi.org/10.26760/mindjournal.v7i2.188-203

L. Palomero, V. Garcia, and J. S. Sánchez, "Fuzzy-Based Time Series Forecasting and Modelling: A Bibliometric Analysis," Applied Sciences, vol. 12, no. 14, p. 6894, 2022.

R. a F. Saputri, "Application of the Fuzzy Time Series Method for Web-Based Sales Prediction at the 3 Roda Sengkaling Wholesale Store," *JATI (Informatics Engineering Student Journal), vol. 3, no. 1, pp. 290-297, 2019. [Online]. Available: https://ejournal.itn.ac.id/index.php/jati/article/download/1391/1247.

V. M. Nasution and G. Prakarsa, “Optimasi Produksi Barang Menggunakan Logika Fuzzy Metode Mamdani,†JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 1, p. 129, Jan. 2020, doi: 10.30865/mib.v4i1.1719.

C. A. Severiano, P. C. D. L. e Silva, M. W. Cohen, and F. G. Guimarães, "Evolving fuzzy time series for spatio-temporal forecasting in renewable energy systems," Renewable Energy, vol. 171, pp. 764-783, 2021.

“Furqan, M., R, RK, & Fauzi, A.,â€. Infocum Journal, vol. 1, no. 9, pp. 82–90, 2020.

U. M. Rifanti, H. Pujiharsono, and Z. H. Pradana, "Implementation of Fuzzy Logic in the Assessment of Independent Campus Learning Activities (MBKM)," JST (Journal of Science And Technology), vol. 12, no. 1, pp. 250-260, 2023. [Online]. Available: https://doi.org/10.23887/jstundiksha.v12i1.50057.

M. Muhammad, S. Wahyuningsih, and M. Siringoringo, “Peramalan Nilai Tukar Petani Subsektor Peternakan Menggunakan Fuzzy Time Series Lee,†Jambura Journal of Mathematics, vol. 3, no. 1, pp. 1–15, Jan. 2021, doi: 10.34312/jjom.v3i1.5940.

A. B. Elfajar, B. D. Setiawan, and C. Dewi, "Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series,"Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, vol. 1, no. 2, pp. 85-94, 2017.

R. Ardinansyah, "Implementasi Metode Fuzzy Time Series untuk prediksi kebutuhan bahan baku pokok produk makanan pada kedai dampizza," JATI (Jurnal Mahasiswa Teknik Informatika), vol. 2, no. 1, pp. 275-282, 2018.

K. Istiqara et al., "Prediction of Malang City PDAM Water Needs Using the Fuzzy Time Series Method with a Genetic Algorithm", Journal of Information Technology and Computer Science Development, vol. 2, no. 1, pp. 133-142, 2018.

R. Rahmawati, M. R. R. Putra, and F. Muttakin,** "Prediksi Jumlah Pengunjung Perpustakaan Daerah Kabupaten Batang dengan Menggunakan Metode Fuzzy Time Series Chen-Hsu," *Journal of Mathematics UNP,* vol. 8, no. 1, pp. 110-119, 2023.




DOI: https://doi.org/10.33387/jiko.v7i2.8614

Refbacks

  • There are currently no refbacks.