IMPLEMENTATION OF MSME CREDIT LOAN DETERMINATION USING MACHINE LEARNING TECHNOLOGY WITH KNN (K-NEAREST NEIGHBORS) ALGORITHM

Muchamad Taufik Nawawi, Agus Suhendar

Abstract


This research aims to develop a loan eligibility prediction model for Micro, Small, and Medium Enterprises (MSMEs) using the K-Nearest Neighbors (KNN) algorithm. The dataset utilized includes variables such as the length of business operation, number of workers, assets, and net turnover of MSMEs. The data is split into training and test sets with a 70:30 ratio. The KNN model is trained using the training data to classify loan eligibility based on a specified k value. The model predictions include whether a loan is accepted and the probability associated with each decision. The results indicate that the KNN model achieved an accuracy rate of 83.939% in predicting loan eligibility. Based on the predictions, 929 MSMEs were deemed eligible to receive loans according to the KNN model recommendations, while 170 MSMEs were classified as ineligible. These findings contribute significantly to the development of decision support systems in the banking and finance sectors, particularly in evaluating MSME loan eligibility.


Full Text:

PDF

References


Munizu, M., Tandiono, R., Pravitasari, E., et al. UMKM (Peran Pemerintah Dalam Daya Saing UMKM Di Indonesia). PT. Sonpedia Publising Indonesia. 2023.

Azizah, H. W., Nurdiawan, O., Dwilestari, G., Kaslani, K., & Tohidi, E. Klasifikasi Pemberian Bantuan UMKM Cirebon Dengan Menggunakan Algoritma K-Nearest Neighbor. Journal Of Computer System And Informatics (Josyc), 3(3), 110-115. 2022 Doi: 10.47065/josyc.v3i3.1392

Sedyastuti, K. Analisis Pemberdayaan UMKM Dan Peningkatan Daya Saing Dalam Kancah Pasar Global. INOBIS: Jurnal Inovasi Bisnis Dan Manajemen Indonesia, 2(1), 117 - 127. 2018. Doi: 10.31842/jurnal-inobis.v2i1.65

Mardanugraha, E., & Akhmad, J. Ketahanan UMKM di Indonesia menghadapi Resesi Ekonomi. Jurnal Ekonomi dan Pembangunan, 30(2), 101-114. 2023. Doi: 10.14203/JEP.30.2.2022.101-114

Evi Sirait, Bagus Hari Sugiharto, Jenal Abidin, Nely Salu Padang, & Johni Eka Putra. Peran UMKM dalam Meningkatkan Kesejahteraan Perekonomian di Indonesia. El-Mal: Jurnal Kajian Ekonomi & Bisnis Islam, 5(7), 3816 –. 3822. 2024. Doi: 10.47467/elmal.v5i7.4160

Eryc, E. Analysis the Metaverse Adoption of Batam City Micro, Small, Medium Enterprises Using Technology Acceptance Model. JIKO (Jurnal Informatika Dan Komputer), 6(3), 165–173. 2023. Doi: 10.33387/jiko.v6i3.6719

Dian Sudiantini, Wahyu Untoro, & Teguh. MANAJEMEN OPERASIONAL BAGI UMKM: PENINGKATAN EFISIENSI DAN PRODUKTIVITAS. Musytari : Neraca Manajemen, Akuntansi, Dan Ekonomi, 1(1), 30–40. 2023. Doi: 10.8734/mnmae.v1i1.185

Dauni, P., Pratiwi, P., & Prasetio, R. T. Pemetaan Keberlangsungan Hidup Umkm Guna Optimalisasi Bantuan Kredit Menggunakan Algoritma Fuzzy C-Means. Jurnal Responsif: Riset Sains Dan Informatika, 5(1), 61-69. 2023. Doi: 10.51977/jti.v5i1.1051

Bangsa, R. A. P. S. A. Metode Knn Pada Sentiment Analisis Review Produk Game Android. Indonesian Journal Of Networking And Security (Ijns), 11(2). Pp. 123-128. 2022. Doi: 10.55181/ijns.v11i2.1769

Hambali, M. Penerapan Manajemen Koperasi Berbasis Syariah (Studi Kasus Di Koprasi Raudlatul Ulum 1 Malang). Al-Astar, 1(2), 39-54. 2022.

Pardede, H. F. Penerapan Pembelajaran Mesin (Machine Learning) dan Pembelajaran Dalam (Deep Learning) Berkinerja Tinggi untuk Mendukung Sektor Pertanian di Indonesia. 2023. Doi: 10.55981/brin.872

Faiza, I. M., & Andriani, W. Tinjauan Pustaka Sistematis: Penerapan Metode Machine Learning Untuk Deteksi Bencana Banjir. Jurnal Minfo Polgan, 11(2), 59-63. 2022. Doi: 10.33395/jmp.v11i2.11657

Yang, P. B., Chan, Y. J., Yazdi, S. K., & Lim, J. W. Optimisation and economic analysis of industrial-scale anaerobic co-digestion (ACoD) of palm oil mill effluent (POME) and decanter cake (DC) using machine learning models: A comparative study of Gradient Boosting Machines (GBM), K-nearest neighbours (KNN), and random forest (RF). Journal of Water Process Engineering, 58(December 2023), 104752. Doi: 10.1016/j.jwpe.2023.104752

Calofir, V., Munteanu, R. I., Simoiu, M. S., & Lemnaru, K. C. Innovative approach to estimate structural damage using linear regression and K-nearest neighbors machine learning algorithms. Results in Engineering, 22(May), 102250. 2024. Doi: 10.1016/j.rineng.2024.102250

Wahyudi, S. Pengembangan Sistem Informasi Klinik Berbasis Web. Riau Journal of Computer Science, 6(1), 50-58. 2020.

Elisa, E., Tukino, T., & Handoko, K. Penerapan Forecasting Methods Untuk Penjualan Produk Umkm Dengan Algoritma K-Nearest Neighbor. Jurnal Tekinkom (Teknik Informasi Dan Komputer), 5(2), 455-463. 2022. Doi: 10.37600/tekinkom.v5i2.629

Zalukhu, A., Purba, S., & Darma, D. (2023). Perangkat Lunak Aplikasi Pembelajaran Flowchart. Jurnal Teknologi, Informasi Dan Industri, 4(1), 61-70. 2023. Doi:

Susnaweli, S. (2024). Faktor Faktor Yang Mempengaruhi Pedagang Muslim Melakukan Kredit Pada Peminjaman Modal Perorangan Di Kota Jambi: Studi Kasus Pasar Modern Handil. Mutiara: Jurnal Penelitian Dan Karya Ilmiah, 2(2), 87-102. 2024. Doi: 10.59059/mutiara.v2i2.1067

Admojo, F. T. Klasifikasi Aroma Alkohol Menggunakan Metode KNN. Indonesian Journal of Data and Science, 1(2), 34-38. 2020. Doi: 10.33096/ijodas.v1i2.12




DOI: https://doi.org/10.33387/jiko.v7i3.9064

Refbacks

  • There are currently no refbacks.