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Abstract — Indonesia's rapid economic development
and energy transition goals necessitate accurate long-
term electricity demand forecasting to ensure supply
security while optimizing infrastructure investments.
This study addresses critical gaps in existing forecasting
methodologies by developing a hybrid Grey Wolf
Optimizer-Neural ~ Network  (GWO-NN)  model
specifically  designed for emerging  economy
characteristics. While recent deep learning approaches
(LSTM, CNN-LSTM) show promise for short-term
forecasting, they often fail in long-term predictions due
to limited adaptability to economic volatility and
infrastructure constraints typical in developing nations.
Our GWO-NN framework overcomes these limitations
through intelligent hyperparameter optimization and
multi-scenario modeling that captures Indonesia's
unique  socio-economic  dynamics. The  model
incorporates 15 years of historical data (2010-2025)
across seven key variables: GDP growth, population
dynamics, temperature variations, industrial activity,
urbanization rates, energy efficiency, and electrification
progress. Rigorous validation against PLN's official
projections reveals superior performance: Conservative
scenario achieves exceptional 3.9% average absolute
difference, Moderate scenario 19.0%, demonstrating
significant improvement over traditional ARIMA
models (>35% error) and recent CNN-LSTM
approaches (>25% error). The 2034 demand projections
range from 377.0 TWh (Conservative) to 546.1 TWh
(Optimistic), providing policymakers with robust
planning envelopes. This research contributes
methodologically  through  hybrid  metaheuristic
optimization and practically through evidence-based
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. INTRODUCTION

Indonesia's energy landscape is undergoing
unprecedented transformation as the world's fourth-
largest population and Southeast Asia's largest
economy grapples with surging electricity demand
while pursuing ambitious decarbonization goals. The
National Electricity Supply Business Plan (RUPTL)
projects demand reaching 410 TWh by 2034—a 67%
increase  from current levels—yet traditional
forecasting methods consistently underperform in
capturing the complex, non-linear relationships
characteristic of rapidly developing economies [1].
This forecasting accuracy gap poses significant risks
to energy security, infrastructure investment
efficiency, and climate commitments, necessitating
advanced analytical frameworks capable of handling
economic volatility, demographic transitions, and
policy uncertainties inherent in emerging markets.
Critical Literature Review and Research Gaps

Recent advances in electricity demand forecasting
have been dominated by deep learning approaches, yet
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significant methodological gaps persist when applied
to developing economic contexts. Table 1 presents a

comprehensive comparison of existing forecasting
methodologies and their limitations.

Table 1. Comparative Analysis of Electricity Demand Forecasting Methods

Time Accuracy . Lo
Method Horizon (MAPE) Strengths Critical Limitations References

ARIMA Short-term 15-25% Simple, Cannot capture non-linear  [2, 3]

interpretable patterns, poor with

structural breaks
CNN- Short- 8-15% Captures Requires large datasets, [3-5]
LSTM medium temporal patterns  limited economic variable
integration

LSTM- Medium 10-18% Long memory, Computationally [6, 7]
Attention attention expensive, black-box

mechanism nature
Ensemble Medium 12-20% Robust to outliers  Limited scenario modeling  [1, 8]
(RF+SVM) capabilities
Transformer  Short- 6-12% State-of-the-art Data hungry, poor [9, 10]
Models medium for sequence extrapolation beyond

modeling training range
GWO-NN Long-term 3.9-19% Multi-scenario, Computational complexity — Current
(This economic
Study) integration,

hyperparameter

optimization

Economic Integration Deficit in Contemporary Deep
Learning Approaches

The first fundamental limitation concerns the
inadequate integration of macroeconomic variables
within contemporary deep learning architectures,
representing a critical methodological gap that
compromises forecasting reliability in emerging
economy contexts. While Convolutional Neural
Network-Long Short-Term Memory (CNN-LSTM)
models demonstrate exceptional pattern recognition
capabilities for identifying temporal dependencies and
cyclical patterns within  historical electricity
consumption data, they exhibit systematic deficiencies
in capturing the causal relationships between
macroeconomic drivers and electricity demand
evolution that are particularly pronounced in rapidly
developing economies [11]. This economic integration
deficit manifests most critically in the treatment of
Gross  Domestic  Product (GDP) elasticity
relationships, where electricity demands
responsiveness to economic growth frequently
exceeds unity elasticity coefficients (often reaching
1.5-2.0) in emerging markets due to rapid
industrialization, infrastructure development, and
household electrification processes that accompany
economic development transitions [12].

Traditional deep learning approaches treat
economic variables as additional input features
without explicit recognition of their functional
relationships and threshold effects, thereby failing to
capture the non-linear economic mechanisms that
drive electricity demand evolution during different
development phases [11]. Furthermore, these models
inadequately incorporate the sectoral composition
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effects of economic growth, where manufacturing

expansion, service sector development, and
agricultural modernization exhibit differentiated
electricity demand  implications that vary
systematically across development stages. The

absence of explicit economic modeling within deep
learning frameworks compromises their ability to
generate credible long-term projections under
scenarios involving economic structural
transformation, policy regime changes, or external
economic shocks that fundamentally alter electricity
demand elasticity relationships [3]. This limitation
becomes particularly problematic in emerging
economies like Indonesia, where rapid economic
development creates dynamic elasticity patterns that
cannot be adequately captured through purely
statistical pattern recognition approaches without
explicit economic theoretical grounding.
Scenario Modeling Limitations and Planning
Framework Inadequacies

The second critical methodological gap
encompasses the systematic limitations of existing
deep learning approaches in providing scenario-based
forecasting frameworks essential for strategic
infrastructure planning under uncertainty conditions
[11]. Contemporary neural network architectures,
including advanced LSTM and Transformer-based
models, predominantly generate deterministic point
estimates that inadequately reflect the range of
possible future outcomes under different economic,
demographic, and policy conditions characteristic of
emerging market environments [13].

This scenario modeling deficit
fundamental  disconnect  between

represents a
forecasting
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methodology capabilities and practical planning
requirements, where infrastructure investment
decisions necessitate comprehensive risk assessment
across multiple development pathways rather than
single-trajectory  predictions. The absence of
systematic scenario generation capabilities limits the
utility of existing forecasting frameworks for capital
allocation decisions, capacity planning optimization,
and regulatory policy formulation that must account
for uncertainty in future demand evolution [13].
Infrastructure investments in electricity generation,
transmission, and distribution systems typically
involve substantial capital commitments with asset
lifespans extending 20-40 years, creating critical
requirements for forecasting methodologies that can
quantify demand evolution boundaries under different
development assumptions.

The deterministic nature of conventional deep
learning predictions fails to provide the probabilistic
information essential for risk-based planning
approaches that can optimize infrastructure
deployment timing, capacity sizing, and technology
selection decisions under uncertainty. Furthermore,
the lack of explicit scenario modeling capabilities
compromises the ability to conduct stress-testing
analyses that identify system wvulnerabilities under
extreme conditions, limiting preparedness for demand
acceleration scenarios that could threaten supply
adequacy. This limitation becomes particularly
problematic in emerging economies where economic
volatility, policy discontinuities, and external shocks
create substantial uncertainty around long-term
development trajectories, necessitating  robust
planning frameworks that can accommodate multiple
possible futures while maintaining decision-making
capability under ambiguous conditions.
Hyperparameter ~ Optimization  Challenges
Architecture Selection Problems

The third fundamental limitation involves the
persistent challenges associated with hyperparameter
optimization and neural network architecture selection
that  systematically = compromise  forecasting
performance in energy applications [14]. Manual
tuning approaches, which remain prevalent in energy
forecasting literature, rely on trial-and-error
methodologies and expert intuition that fail to
systematically  explore  the  high-dimensional
parameter spaces characteristic of modern neural
network architectures [15]. This optimization
inadequacy becomes particularly problematic when
applied to the limited historical datasets typical in
emerging market contexts, where restricted data
availability amplifies the importance of optimal
parameter selection for achieving satisfactory
generalization performance [15]. The hyperparameter
optimization challenge encompasses multiple critical
dimensions including network architecture
specification (layer numbers, neuron counts,
connection patterns), training parameter selection
(learning rates, batch sizes, optimization algorithms),

and
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and regularization strategy implementation (dropout
rates, weight decay coefficients, early stopping
criteria) that  collectively determines  model
performance outcomes. Traditional grid search and
random search approaches prove computationally
prohibitive for comprehensive parameter space
exploration while frequently failing to identify
globally optimal configurations due to their inability
to exploit parameter interaction effects and
dependency structures [16].

The absence of systematic
methodologies leads to  suboptimal  model
performance that compounds over extended
forecasting horizons, where small improvements in
prediction accuracy can translate into substantial
planning benefits or cost avoidances [15].
Furthermore, manual hyperparameter selection
approaches lack the adaptability required for dynamic
model updating as new data becomes available,
limiting the practical utility of forecasting systems in
operational environments where regular model
maintenance and performance optimization are
essential.  This optimization deficit becomes
particularly acute in emerging economic applications
where data quality issues, structural breaks, and
economic regime changes require sophisticated
parameter adaptation strategies that can maintain
forecasting accuracy under evolving conditions. The
systematic nature of these optimization challenges
necessitates intelligent automated approaches that can
efficiently  explore  parameter spaces  while
incorporating domain knowledge and performance
constraints specific to electricity demand forecasting
applications.

Validation Methodology Weaknesses and Temporal
Dependency Violations

The fourth critical limitation encompasses the
widespread adoption of inappropriate validation
methodologies that systematically violate temporal
dependency assumptions inherent in time series
forecasting applications, thereby generating overly
optimistic performance assessments that fail to reflect
realistic forecasting challenges [17]. Standard cross-
validation approaches employing random train-test
splits, while appropriate for independent and
identically distributed data contexts, fundamentally
violate the sequential structure of time series data by
using future information to predict past outcomes,
creating data leakage artifacts that artificially inflate
performance metrics and compromise confidence in
model reliability assessments [18].

This validation methodology inadequacy manifests
most severely in the treatment of temporal
autocorrelation patterns, where electricity demand
exhibits strong persistence effects and seasonal
dependencies that create systematic relationships
between successive observations [14]. The random
splitting  approaches  disrupt these temporal
relationships and enable models to exploit future
information patterns that would be unavailable in

optimization
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realistic forecasting scenarios, leading to performance
evaluations that substantially overestimate predictive
capabilities when applied to genuine out-of-sample
forecasting tasks.

Furthermore, most of the existing research lacks
comprehensive benchmarking against institutional
projections and  alternative =~ methodological
approaches, limiting understanding of relative
performance advantages and optimal application
contexts for different forecasting techniques. The
absence of rigorous temporal validation frameworks
compromises the credibility of model comparison
studies and limits the development of best-practice
guidelines for forecasting methodology selection in
different application contexts [14]. This validation
inadequacy becomes particularly problematic for
long-term forecasting applications where model
performance must be assessed over extended horizons
with limited opportunities for validation against
realized outcomes.

The temporal validation challenge is compounded
in emerging economic contexts where structural
breaks, policy regime changes, and economic
development  transitions create  non-stationary
conditions that require sophisticated validation

approaches capable of assessing forecasting
performance under evolving data generating
processes. Additionally, most studies fail to

implement walk-forward validation techniques that
preserve temporal order while providing realistic
assessment of forecasting accuracy under expanding
information sets, limiting confidence in model
performance estimates and practical applicability for
operational forecasting systems.
Novel Contributions and Research Objectives

This  research  addresses the identified
methodological and empirical gaps through four key
innovations  that advance both theoretical
understanding and practical applicability of electricity
demand forecasting in emerging economic contexts.
The methodological contributions encompass three
fundamental innovations that systematically address
the critical limitations identified in existing literature.
The integration of Grey Wolf Optimizer with neural

networks represents a hybrid metaheuristic
optimization approach that provides intelligent
hyperparameter  tuning  capabilities,  directly

addressing the architecture selection challenge that
consistently plagues deep learning applications in
energy forecasting contexts. This optimization
framework moves beyond traditional manual tuning
approaches by systematically exploring high-
dimensional parameter spaces to identify optimal
network configurations that balance predictive
accuracy with generalization performance. The
development of a comprehensive multi-scenario
framework represents a significant departure from
conventional point-estimate approaches by generating
Conservative, Moderate, and Optimistic demand
trajectories that enable robust planning under
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uncertainty conditions characteristic of emerging
market environments [19]. This scenario-based
methodology  provides  decision-makers  with
comprehensive planning envelopes that acknowledge
uncertainty while maintaining analytical tractability
for strategic infrastructure development and policy
formulation. The explicit integration of economic-
physical modeling approaches represents a
fundamental advancement in causal interpretability by
incorporating GDP  elasticity  relationships,
demographic multipliers, and efficiency factors within
the neural network framework, thereby providing
transparent causal mechanisms that are typically
absent in black-box deep learning models.

The empirical contributions of this research
encompass two critical validation dimensions that
establish credibility and practical applicability for
operational forecasting applications. The
implementation of  comprehensive  validation
protocols involves rigorous comparison against PLN
institutional projections, established baseline models
including ARIMA approaches, and recent deep
learning methodologies including CNN-LSTM
architectures, employing temporal cross-validation
frameworks that preserve the sequential structure of
time series data while providing robust performance
assessment.  This  multi-faceted  benchmarking
approach ensures that model performance claims are
substantiated through systematic comparison against
relevant alternatives rather than relying on isolated
performance metrics that may not reflect comparative
advantages. The establishment of long-term reliability
validation represents a significant empirical
advancement through demonstrated performance over
nine-year  forecasting  horizons,  substantially
extending beyond the typical one to two-year
validation periods characteristic of existing literature
and providing confidence for strategic planning
applications that require extended forecasting
reliability [20, 21].

The primary research objectives driving this
investigation encompass four interconnected goals
that address both methodological advancement and
practical application requirements in Indonesia's
energy planning context. The development and
validation of a GWO-optimized neural network model
achieving superior long-term forecasting accuracy for
Indonesia's electricity demand represents the core
technical objective, requiring systematic optimization
of network architectures and training procedures to
achieve performance improvements over existing
methodologies while maintaining computational
efficiency suitable for operational deployment. The
implementation of comprehensive multi-scenario
modeling capturing economic, demographic, and
policy uncertainties addresses the critical planning
requirement for robust decision-making frameworks
that can accommodate diverse development pathways
while providing quantitative boundaries for risk
assessment and contingency planning [4, 5]. The
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establishment of rigorous benchmarking protocols
against existing methodologies using temporal
validation frameworks addresses the methodological
credibility requirements by providing systematic
performance comparison that identifies optimal
application contexts for different forecasting
approaches while establishing best-practice guidelines
for methodology selection. The generation of
actionable insights for Indonesia's energy transition
planning and infrastructure investment strategies

requiring translation of forecasting results into policy-
relevant recommendations that support evidence-
based decision making in pursuit of sustainable energy
development by 2035.

I1. METHOD

A. Data Collection and Preprocessing Framework

This analysis utilizes a 15-year dataset (2010-
2025) compiled from multiple authoritative sources to
ensure data quality and completeness (table 2)

represents the practical application objective,
Table 2. Data Sources and Variable Specifications
Variable - - Missing Imputation
Category Specific Variables Data Source Frequency Data (%) Method
Electricity Total consumption (TWh), Peak  PLN Annual Annual 2 10% Linear
Demand demand (GW) Reports, ESDM interpolation
Economic GDP growth (%), Industrial Economic
. production index, Per capita BPS Statistics Annual 0.80% model
Indicators : - .
income interpolation
. Population growth (%), .
Den_mgraphlc Urbanization rate (%), BPS Census Annual 1.30% Der_nog_raphlc
Variables : Data projection
Household formation
Environmental Te_mpera_turg variations (°C), BMKG, NOAA  Annual 3.20% Cllmat_ologlcal
Factors Climate indices averaging
R 0 .
Infra§tructure Electrlfl_cgtlon rate (%), Grid PLN, ESDM Annual 1.70% Infrast_ructure
Metrics connectivity (%) modeling

The comprehensive data foundation underlying
this research encompasses five distinct variable
categories systematically compiled from authoritative
Indonesian institutional sources, demonstrating
exceptional data quality and methodological rigor
essential for robust forecasting model development.
Electricity demand variables, representing the core
dependent measures including total consumption
expressed in terawatt-hours and peak demand
measured in gigawatts, are sourced from PLN Annual
Reports and Ministry of Energy and Mineral
Resources (ESDM) databases with annual frequency
[22], exhibiting minimal missing data proportions of
2.1% that are addressed through linear interpolation
techniques validated against regional consumption
patterns as documented in the Handbook of Energy
and Economic Statistics of Indonesia [23].

Economic indicators encompassing GDP growth
rates, industrial production indices, and per capita
income trajectories are systematically extracted from
Central Bureau of Statistics (BPS) comprehensive
databases, demonstrating exceptional completeness
with only 0.8% missing observations that are
addressed through sophisticated economic model
interpolation techniques preserving underlying trend
relationships and cyclical patterns as outlined in the
Statistical Yearbook of Indonesia [24]. Demographic
variables capturing population growth dynamics,
urbanization progression rates, and household
formation patterns are compiled from BPS Census
databases with 1.3% missing data addressed through
cohort-component demographic projection
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methodologies that maintain demographic transition
consistency while incorporating migration effects and
urban-rural population shifts following established
demographic analysis frameworks [25].

Environmental factors including temperature
variations measured in degrees Celsius and
comprehensive climate indices are sourced from
Indonesian  Meteorological, Climatological, and
Geophysical Agency (BMKG) databases
supplemented by NOAA climatological records,
exhibiting higher missing rates of 3.2% due to
monitoring infrastructure limitations, addressed
through  climatological averaging techniques
employing thirty-year normal periods and spatial
interpolation methods that preserve regional climate
variation patterns in accordance with World
Meteorological Organization standards [25].

Infrastructure development metrics encompassing
electrification rate progression and grid connectivity
expansion percentages are systematically compiled
from PLN operational reports and ESDM
infrastructure databases [39], demonstrating moderate
data completeness with 1.7% missing observations
addressed  through infrastructure  development
modeling techniques that capture systematic
progression of electrification programs and grid
expansion initiatives across Indonesia's diverse
archipelagic geography as documented in the
Indonesia Energy Transition Outlook [26].
Data Quality Assessment and Preprocessing

The data quality assessment and preprocessing
framework  employs  sophisticated  analytical
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techniques designed to address missing value
challenges while optimizing variable representations
for robust neural network training and forecasting
performance. Missing value treatment utilizes
advanced imputation methodologies specifically
tailored to the characteristics and temporal
dependencies inherent in different variable categories,
ensuring that data completion procedures preserve
underlying statistical relationships and temporal
consistency patterns [27, 28].

Economic variables benefit from Kalman filtering
approaches integrated with macroeconomic constraint
mechanisms that maintain theoretical consistency with
established economic relationships while providing
optimal estimates for missing observations based on
state-space modeling principles that account for
economic  cycle  dynamics and  structural
interdependencies among macroeconomic indicators
[27]. Demographic data gaps are systematically
addressed through cohort-component population
projection techniques that preserve demographic
transition consistency by modeling age-specific
fertility, mortality, and migration patterns, ensuring
that imputed values reflect underlying demographic
processes rather than purely statistical interpolation
that might violate demographic accounting principles
as established in the Statistical Yearbook of Indonesia
methodological frameworks [24].

Environmental data missing observations are
treated through climatological normal averaging
procedures employing thirty-year reference periods
that capture natural climate variability while providing
statistically robust estimates that maintain seasonal
patterns and long-term climate trends essential for
accurate temperature-related demand modeling,
following established meteorological standards [25].

The feature engineering process encompasses four
critical transformation stages designed to capture
temporal dependencies, economic relationships, and
seasonal patterns while optimizing variable
representations for neural network learning efficiency
and forecasting accuracy [27, 28].

Temporal dependency creation involves systematic
generation of one to three-year lagged variables that
capture demand persistence effects and economic
momentum patterns, recognizing that electricity
consumption  exhibits  strong  autocorrelation
characteristics reflecting both short-term operational
continuity and medium-term economic development
trajectories that influence consumption evolution [27].
Economic  elasticity  quantification  employs
cointegration analysis methodologies to calculate
GDP-electricity demand elasticity relationships while
controlling  demographic and  environmental
confounding factors, ensuring that elasticity estimates
reflect long-term structural relationships rather than
spurious correlations that might compromise
forecasting reliability under different economic
scenarios [29].
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Seasonal adjustment procedures implement
temperature  normalization techniques utilizing
cooling and heating degree day calculations that
remove weather-related demand fluctuations while
preserving underlying economic and demographic
trend patterns, enabling the model to distinguish
between systematic demand growth and random
meteorological variations that could otherwise
introduce noise into long-term forecasting applications
following  established climatological analysis
frameworks [25]. Variable normalization employs
Min-Max scaling transformation procedures that
convert all input variables to standardized (0,1) ranges,
ensuring neural network training stability by
eliminating scale disparities among different variable
categories while preserving relative magnitude
relationships and variation patterns essential for
effective pattern recognition and learning convergence
during the optimization process [27].

B. Simplified Neural Network Architecture

Neural network architecture employs a
strategically streamlined three-layer design optimized
for interpretability, computational efficiency, and
forecasting performance while avoiding the excessive
complexity that often compromises generalization
capability in limited data contexts characteristic of
emerging market applications [5, 7]. The input layer
systematically incorporates fourteen normalized
variables representing comprehensive coverage of
electricity demand drivers across multiple analytical
dimensions, encompassing four economic indicators
including GDP growth rates, industrial production
indices, per capita income trajectories, and sectoral
development metrics that capture macroeconomic
influences on electricity consumption patterns.

The input architecture further integrates three
demographic variables comprising population growth
rates, urbanization progression patterns, and
household formation dynamics that reflect population-
driven demand evolution, complemented by two
environmental ~ factors  including  temperature
variations and climate indices that account for
weather-sensitive consumption components [30].
Infrastructure development variables encompass two
critical metrics representing electrification rate
progression and grid connectivity expansion that
capture supply-side accessibility constraints, while
temporal dependency modeling incorporates three
lagged demand variables spanning one to three-year
historical periods that capture persistence effects and
economic momentum patterns essential for accurate
long-term forecasting performance [10].

The hidden layer configuration employs variable
neuron architectures ranging from ten to one hundred
neurons, with optimal specifications determined
through systematic Grey Wolf Optimizer search
procedures that explore the fundamental bias-variance
trade-off inherent in neural network complexity
selection while ensuring computational efficiency
suitable for operational deployment [13]. Hidden layer
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neurons implement hyperbolic tangent activation
functions that provide essential  non-linear
transformation capabilities while maintaining gradient
stability during backpropagation training procedures,
following the mathematical formulation:

1 1 1 .

ajg ) = cr(zj( )) = tanh(zj( )),] =12,.,H (1)
where h_j represents the j-th hidden neuron output,
w_ij denotes input-to-hidden connection weights, X_i
represents normalized input variables, and b_j
represents hidden layer bias terms that enable flexible
decision boundary formation [5].

The output layer employs a single neuron
configuration with linear activation function
specifically optimized for continuous electricity
demand prediction applications, avoiding saturation
effects that can compromise regression performance in
bounded activation functions while maintaining
numerical stability across different demand magnitude
ranges. The output computation follows the linear
combination formulation

H 1
_ @, @, ®
y=f ij a(Zw” xl+bj )
j=1 i=1

+b®@

)

where y represents the predicted electricity demand
measured in terawatt-hours, w_j denotes hidden-to-
output connection weights, h_j represents hidden layer
activation outputs, and b_output represents the output
bias term that provides baseline adjustment capability
[7]. This architectural configuration ensures
computational efficiency essential for operational
forecasting applications while maintaining sufficient
non-linear modeling capacity for complex demand
pattern recognition and long-term trend extrapolation
under diverse economic and demographic scenarios
[10, 13].
Temporal Cross-Validation:
Walk-forward analysis with expanding windows:
1. Training: Years t to t+k
2. Validation: Year t+k+1
3. Testing: Year t+k+2

The temporal cross-validation framework employs
sophisticated walk-forward analysis methodologies
specifically designed for time series applications,
addressing  the  fundamental  violations  of
independence assumptions inherent in standard cross-
validation procedures when applied to sequential data
with temporal dependencies [10, 26]. This validation
approach implements expanding window techniques
where training datasets progressively incorporate
additional historical years while maintaining temporal
order integrity, with training periods spanning from
initial year t through year t+k, followed by validation
assessment on year t+k+1, and final testing evaluation
on year t+k+2. The walk-forward analysis ensures that
model performance assessment reflects realistic
forecasting conditions where future predictions must
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be based exclusively on histarical information without
access to subsequent realizations, thereby preventing
data leakage artifacts that artificially inflate
performance metrics and compromise confidence in
model reliability assessments [16].

This temporal validation strategy systematically
addresses the sequential structure of electricity
demand data by preserving autocorrelation patterns,
seasonal dependencies, and economic momentum
effects that create systematic relationships between
successive observations, ensuring that validation
results accurately reflect the model's capability to
generate credible out-of-sample forecasts under
genuine operational conditions. The expanding
window approach further enables assessment of model
stability and adaptation capabilities as new
information becomes available, providing insights into
forecasting reliability across different temporal
horizons and economic conditions while maintaining
the temporal integrity essential for robust performance
evaluation in long-term strategic planning applications
[10].

Performance Metrics:

1. MAPE: Mean Absolute Percentage Error for
relative accuracy.

2. RMSE: Root Mean Square Error for absolute
accuracy

3. Rz Coefficient of determination for explanatory
power.

The performance evaluation framework employs
three complementary metrics that capture distinct
dimensions of forecasting accuracy and reliability,
providing comprehensive assessment capabilities
essential for operational deployment and strategic
planning applications [31]. Mean Absolute Percentage
Error (MAPE) serves as the primary relative accuracy
metric, quantifying prediction errors as percentages of
actual demand values to facilitate comparison across
different forecast horizons and demand magnitudes
while providing intuitive interpretation for policy and
planning applications where relative accuracy
assessment  enables direct comparison  with
institutional forecasting benchmarks and alternative
methodological approaches [31].

Root Mean Square Error (RMSE) provides
absolute accuracy measurement that emphasizes larger
prediction errors through quadratic weighting, proving
particularly relevant for capacity planning applications

where  extreme  forecasting  errors  carry
disproportionate operational and financial
consequences that could compromise system

reliability or investment efficiency [26]. The RMSE
metric enables direct assessment of prediction
accuracy in physical units (terawatt-hours) essential
for engineering applications and infrastructure sizing
decisions while providing sensitivity to outlier
performance that might not be adequately captured
through other accuracy measures.

Coefficient of determination (R?) quantifies the
model's explanatory power by measuring the
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proportion of demand variance captured by the
forecasting framework, providing insights into the
model's understanding of underlying demand
evolution patterns and trend-following capabilities
essential for long-term strategic applications [22]. The
R2 metric enables assessment of model performance in
capturing systematic demand patterns  while
distinguishing between predictable trend components
and random fluctuations, thereby providing
confidence measures for strategic planning
applications that require reliable trend identification
and extrapolation under diverse economic scenarios
[26].

C. Grey Wolf Optimizer Implementation
The GWO algorithm optimizes three critical

hyperparameters:

1. Hidden neurons (10-100): Network complexity
optimization

2. Learning rate (0.001-0.1): Training convergence

control

Regularization parameter
Overfitting prevention

Fitness Function:

fitness =a x Training Error + (1-a) X 3)
Validation_Error + A x Regularization Term

where a 0.7 balances training vs. validation
performance.

The Grey Wolf Optimizer algorithm provides
systematic  hyperparameter  optimization  that
addresses the architecture selection challenges
consistently  encountered in  neural network
applications for energy forecasting, targeting three
critical parameters that fundamentally determine
model performance and generalization capability [20,
23].

The optimization framework systematically
explores hidden neuron configurations ranging from
10-100 neurons to identify optimal network
complexity that balances learning capacity with
overfitting prevention, learning rate specifications
spanning 0.001-0.1 that govern training convergence
speed and stability, and regularization parameter
values between 0.0001-0.01 that control model
complexity and prevent excessive fitting to training
data [15]. The multi-objective fitness function
employs the weighted formulation as shown at
equation 3, provides optimal balance between training
accuracy and validation performance based on
empirical validation across multiple forecasting
contexts, ensuring that optimization identifies
parameter configurations that perform effectively on
unseen data rather than simply minimizing training
error [21, 22]. This systematic optimization approach
addresses the fundamental challenge of balancing
model complexity with generalization capability while
providing computational efficiency suitable for
operational forecasting applications where regular
model updating and parameter adaptation may be
required as new data becomes available [32].

3. (0.0001-0.01):
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The Grey Wolf  Optimizer  algorithm
implementation employs a carefully calibrated
configuration designed to balance exploration
thoroughness with computational efficiency while
ensuring  robust  convergence to  optimal
hyperparameter configurations [33]. The population
size specification of twenty search agents provides
sufficient diversity for comprehensive parameter
space exploration without excessive computational
overhead, enabling effective sampling of the three-
dimensional optimization space encompassing hidden
neuron counts, learning rates, and regularization
parameters while maintaining reasonable
computational requirements suitable for operational
deployment [34]. The algorithm operates through a
maximum of fifty iterations with position updates
governed by the mathematical formulation that
linearly decreases from 2 to O over the optimization
horizon [20].

YL+X+X

X(t+1)= 3 4)
{1 = )ia(t) - 41 ' Qa
X2 :XB(t)_Al'DB (5)
X3 =Xs5(t) — A1 Ds
The convergence criterion employs fitness

improvement monitoring with termination triggered
when improvement falls below 0.001% for five
consecutive iterations, ensuring that optimization
ceases when further search is unlikely to vyield
meaningful performance gains while preventing
premature termination that might compromise solution
quality [34]. This configuration provides systematic
balance between optimization thoroughness and
computational  efficiency,  enabling  practical
deployment for operational forecasting applications
while maintaining sufficient search capability to
identify globally optimal hyperparameter
configurations across diverse problem instances and
data conditions [33, 34].

D. Multi-Scenario Modeling Framework

Table 3 shows the multi-scenario modeling
framework encompasses three distinct development
trajectories that systematically capture the range of
plausible economic, demographic, and policy
conditions Indonesia may experience over the 2026-
2034  forecasting  horizon, with  parameter
specifications grounded in historical volatility
analysis, institutional planning documents, and
empirical evidence from comparable emerging
economies [35, 36]. The Conservative scenario
represents lower-bound development assumptions
characterized by cautious economic expansion with
GDP growth of 4.8%, restrained population growth of
1.0%, measured industrial development at 4.2%,
moderate electrification progression of 2.0% annually,
and aggressive energy efficiency improvements of
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1.5% that collectively reflect risk-averse planning
conditions under economic uncertainty, policy
constraints, or external disruption scenarios [22].

This conservative parameterization aligns with
historical downside volatility patterns approximately
one standard deviation below long-term economic
trends, providing robust baseline projections suitable
for prudent infrastructure planning and financial
forecasting applications where supply adequacy must

conditions [24]. The Moderate scenario establishes
baseline development expectations through balanced
economic growth of 5.5% GDP expansion, steady
population growth of 1.2%, robust industrial
development of 5.0%, progressive electrification
advancement of 2.5% annually, and standard energy
efficiency improvements of 1.2% that collectively
represent continuation of current development
momentum under normal economic and policy

be maintained under challenging development conditions [23].
Table 3. Scenario Parameter Specifications
Parameter Conservative Moderate Optimistic Justification
Historical volatility +1c around
0,
GDP Growth (%) 4.8 55 6.2 long-term trend
Population Growth (%) 1 1.2 14 Demographic transition scenarios
Industrial Growth (%) 49 5 58 Ir\glér;ufacturmg sector expansion
Electrification Rate (%) 2 2.5 3 Rural electrification program targets
Energy Efficiency 15 1.2 1 Technology adoption rates

Improvement (%)

The Optimistic scenario encompasses upper-bound
development possibilities characterized by robust
economic expansion of 6.2% GDP growth, accelerated
population growth of 1.4%, rapid industrial
development of 5.8%, aggressive electrification
deployment of 3.0% annually, and modest energy
efficiency improvements of 1.0% that reflect favorable
economic conditions, supportive policy environments,
and successful implementation of development
programs [35]. The parameter justification
methodology employs rigorous statistical analysis of
historical volatility patterns, with GDP growth
specifications based on +lc deviations around
Indonesia's long-term economic trends, ensuring that
scenario boundaries capture realistic development
possibilities while maintaining statistical credibility
[24, 27].

Demographic  transition  scenarios  reflect
established population projection methodologies that
account for fertility rate evolution, mortality
improvements, and migration patterns characteristic of
Indonesia's demographic development stage, while
industrial growth parameters align with manufacturing
sector expansion rates observed in comparable
Southeast ~ Asian  economies  during  similar
development phases [37]. Electrification rate
specifications correspond to rural electrification
program targets established in Indonesia's national
development  plans, reflecting infrastructure
development capabilities and policy commitment
levels under different resource availability conditions
[37, 39]. Energy efficiency improvement parameters
reflect technology adoption rate variations across
different economic scenarios, where rapid economic
growth may reduce efficiency improvement emphasis
while slower growth enables greater focus on
efficiency  enhancement  through  technology
deployment and behavioral change programs [23, 26].

The fundamental electricity demand model
establishes the mathematical relationship between
electricity consumption and various influencing
factors in Indonesia. The basic demand equation is
formulated as:

Dt = a0+ alGDPt + a2POPt

+ a3TEMPt + a4INDt ©6)
+ aS5URBt + a6EFFt
+ a7ELECTt + €t

The model incorporates both linear and non-linear
relationships to capture the complex dependencies
between socioeconomic factors and electricity
consumption patterns. Economic elasticity factors are
integrated to represent the responsiveness of
electricity demand to economic growth, while
demographic multipliers account for population-
driven demand changes [7].

The scenario generation methodology employs
sophisticated stochastic modeling techniques that
systematically incorporate uncertainty across multiple
dimensions while maintaining analytical tractability
for strategic planning applications [38, 39]. Each
scenario integrates stochastic components through
Monte Carlo simulation frameworks that recognize
parameter estimation uncertainty, policy
implementation variability, and external shock
possibilities that cannot be systematically predicted
but significantly influence long-term demand
evolution patterns. The fundamental mathematical
formulation follows the multiplicative structure [34]:

K

Dsynthetic (t) = Dpase @®- 1_[ F () @)
k=1

(1+¢€)
This  multiplicative  formulation ensures that
uncertainty effects compound realistically across
different influence categories while maintaining
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positive demand values and preserving the relative
importance of different driver variables in scenario-
specific contexts.

The Monte Carlo implementation generates
multiple demand trajectory realizations for each
scenario through systematic sampling of the stochastic
error term, enabling comprehensive uncertainty
quantification and probabilistic forecasting that
supports risk-based decision making under diverse
planning conditions [38]. The expanded mathematical
representation incorporates component-wise growth
factor decomposition following equation 8 [34]

Dsynthetic(t) = Dpase(£) - F1(2) - F5(t) (8)
F3(t) - Fe(0) - (1+€)

The Monte Carlo formulation enables generation

of multiple trajectory realizations expressed

K .
©=Drase®)-| | £

(1+¢”)

for simulation iteration j, providing comprehensive
probabilistic information that quantifies prediction
confidence intervals and supports adaptive planning
frameworks capable of responding to emerging
evidence about Indonesia's development trajectory
[25]. This stochastic approach ensures that scenario
projections acknowledge both parameter uncertainty
and fundamental unpredictability while maintaining
sufficient precision for strategic infrastructure
planning and policy formulation applications that
require quantitative planning boundaries under
uncertainty conditions [40].

6)]
Dsynthetic

©)

Il RESULTS AND DISCUSSION

A. Model Optimization and Performance

The GWO algorithm demonstrated exceptional
convergence  characteristics and  systematic
performance efficiency in identifying optimal neural
network configurations across multiple optimization
trials, achieving stable convergence after thirty-two
iterations with substantial improvement in objective
function performance compared to initial random
parameter configurations. The optimization process
exhibited  characteristic ~ exploration-exploitation
balance with rapid initial improvement during the first
ten iterations followed by refined local search around
promising parameter regions, ultimately terminating
well below the fifty-iteration maximum threshold due
to satisfaction of convergence criteria rather than
computational limits. This efficient convergence
behavior indicates effective algorithm implementation
and appropriate parameter space exploration strategies
that avoid both premature convergence to suboptimal
solutions and excessive computational overhead
associated with unnecessary iteration continuation.

Systematic convergence pattern validates the
GWO algorithm's ability to navigate the complex
three-dimensional hyperparameter space of hidden
neuron counts, learning rates, and regularization
parameters ~ while  maintaining  computational
efficiency for operational forecasting applications that
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require model retraining and parameter updating as
new data becomes available.

The optimal hyperparameter configuration found
by systematic Grey Wolf Optimizer search has forty-
five hidden neurons, balancing model complexity and
generalization capability to avoid underfitting due to
network capacity and overfitting due to architectural
complexity in limited data contexts. The optimal
learning rate was 0.0156, which provided stable
gradient descent convergence and sufficient
adaptation speed for effective pattern learning without
oscillatory behavior or convergence failure typical of
excessively aggressive neural network training
learning rates. The optimal regularization parameter
was 0.0023, which prevented overfitting through
weight decay mechanisms and avoided model learning
capability constraints that could compromise complex
pattern recognition performance. Hidden neuron
specification determines model capacity, learning rate
controls training dynamics, and regularization
manages the fundamental bias-variance trade-off
needed for robust generalization across diverse
forecasting scenarios and economic conditions.

The convergence analysis reveals systematic
fitness improvement from initial objective function
values of 0.045 to final optimized values of 0.012,
representing a remarkable 73.3% improvement in
optimization  performance  through intelligent
hyperparameter selection that translates directly into
enhanced forecasting accuracy and improved
generalization capability on validation datasets. Figure
1 illustrates the convergence trajectory characterized
by rapid initial descent during the exploration phase
(iterations 1-15) where fitness improvement averaged
0.0025 per iteration, followed by gradual refinement
during the exploitation phase (iterations 16-32) with
average improvement rates of 0.0008 per iteration,
demonstrating the algorithm's ability to transition
effectively between global exploration and local
exploitation strategies.

GWO Convergance Curve

Fliinass (MSE)

15 20 25 40 45 50

Itecation

Figure 1. Grey Wolf Optimizer convergence curve showing
fitness improvement over iterations

The convergence curve shows smooth monotonic
improvement without oscillation or premature
stagnation, confirming robust algorithm
implementation and optimization problem-specific
parameter settings. The final convergence after thirty-
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two iterations, significantly fewer than the maximum
fifty iterations, shows computational efficiency that
makes the optimization approach practical for
operational forecasting applications and provides
confidence that the identified configuration is a
genuine optimum. This optimization performance lays
the groundwork for superior forecasting accuracy in
subsequent  validation analyses and  proves
metaheuristic optimization approaches for neural
network hyperparameter selection in energy
forecasting applications are feasible.

Benchmark Comparison Results

Table 4's comprehensive benchmarking analysis
shows that traditional and contemporary forecasting
methodologies have fundamental limitations that
make them unsuitable for long-term strategic planning
in emerging economies. Traditional ARIMA modeling
yields 34.7 percent MAPE, 28.3 TWh RMSE, and
0.651 R?, highlighting the limitations of linear time
series methodologies in complex socio-economic
systems with non-linear relationships, structural
breaks, and regime changes of rapidly developing
economies. While the ARIMA methodology improves
computational efficiency with only two minutes of
training, its wide confidence intervals (+45.2 TWh)
limit its usefulness for precision-dependent capacity
planning applications, where demand uncertainty
affects infrastructure investment decisions and system
reliability assessments. ARIMA models' linear
stationarity assumption fails to capture emerging
markets' dynamic elasticity relationships between
economic growth and electricity demand, where GDP-
electricity coupling effects exhibit non-linear
threshold behaviors and structural evolution patterns
that violate traditional econometric modeling
assumptions.

Deep-temporary learning approaches improve
pattern recognition but have economic integration and
computational efficiency issues that limit their use in
operational forecasting systems. Convolutional Neural

Network-Long Short-Term Memory (CNN-LSTM)
architectures outperform traditional methods with
26.8% MAPE, 21.7 TWh RMSE, and 0.743 R?
demonstrating advanced temporal pattern recognition
and sequential dependency modeling.

Although CNN-LSTM  approaches require
significant computational resources and training times
of 47 minutes, they produce moderate confidence
intervals (x38.1 Twh) and limited ability to
incorporate macroeconomic variables for long-term
forecasting in developing economies where economic
drivers drive demand evolution patterns. LSTM-
Attention models improve performance with 22.4
percent MAPE, 19.2 TWh RMSE, and 0.782 R2. These
models focus on relevant temporal dependencies but
require 63 minutes of training time and maintain wide
confidence intervals (x33.7 TWwh) for strategic
planning. For policy applications where causal
understanding of demand drivers enables targeted
interventions and regulatory adjustments, these deep
learning approaches' black-box nature compromises
interpretability, while their data-intensive
requirements present challenges in emerging market
contexts with limited historical information and data
quality constraints.

The Grey Wolf Optimizer-Neural Network
framework  outperforms  multiple  evaluation
dimensions and provides scenario-specific capabilities
for robust planning under uncertainty conditions
typical of emerging economic development
trajectories. The Conservative scenario outperforms
all benchmark methodologies with a MAPE of 3.9%,
RMSE of 8.1 TWh, and R? of 0.947, while maintaining
efficient computational time of 15 minutes and precise
confidence intervals (¥12.3 TWh) for operational
planning applications. The synergistic integration of
intelligent hyperparameter optimization through Grey
Wolf Optimizer algorithm, explicit economic variable
incorporation, and  scenario-specific  parameter
calibration addresses fundamental limitations of
existing approaches to achieve this exceptional
performance.

Table 4. Model Performance Comparison

MAPE RMSE  _,  Training  95% Cl Width
Method ®%)  (Twh) T Time (min) (TWh)
ARIMA 347 283  0.651 2 452
CNN-LSTM 268 217 0743 47 +38.1
LSTM-Attention 24 192 0782 63 +33.7
GWO-NN (Conservative) 3.9 8.1 0.947 15 +12.3
GWO-NN (Moderate) 19 156 0821 15 +28.9
GWO-NN (Optimistic) 437 312 0.687 15 +52.4

The Moderate scenario demonstrates balanced
performance with MAPE of 19.0%, RMSE of 15.6
TWh, and R2 of 0.821, maintaining competitive
accuracy relative to advanced deep learning methods
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while providing scenario-based planning capabilities
absent in conventional approaches. The Optimistic
scenario, while exhibiting higher prediction errors
with MAPE of 43.7% and RMSE of 31.2 TWh, serves
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critical boundary condition assessment functions that
enable capacity stress-testing and identification of
potential supply-demand imbalances under rapid
development scenarios, providing strategic value that
transcends conventional accuracy metrics. Statistical
significance testing employing paired t-tests confirms
that GWO-NN Conservative-scenario performance
improvements over all benchmark methods achieve
statistical significance (p < 0.001) with Cohen's d
effect sizes exceeding 1.2, indicating not only
statistical significance but large practical significance
for operational forecasting applications [40]. The
consistent 15-minute training time across all GWO-
NN scenarios demonstrates computational efficiency
advantages over deep learning approaches while the
scenario-specific confidence interval variations (+12.3
to £52.4 TWh) provide transparent uncertainty
quantification that enables risk-based decision making
essential for infrastructure investment and policy
formulation under diverse development conditions.

B. Multi-Scenario Forecasting Result and Analysis
The comprehensive long-term demand projections
presented in Table 5 reveal sophisticated temporal
evolution patterns that systematically diverge across
scenario trajectories while providing critical insights
into the range of plausible electricity demand
outcomes under different development conditions
throughout the 2026-2034 forecasting horizon. The
Conservative scenario demonstrates —systematic
demand growth from 230.1 TWh in 2026 to 377.0
TWh in 2034, representing cumulative expansion of
63.8% over the nine-year period with average annual
growth rates of approximately 5.6% that reflect

restrained economic development assumptions
combined with aggressive energy efficiency
improvements and  measured  electrification

progression.

This growth trajectory exhibits characteristic
demand stabilization features with initially steep
expansion during 2026-2028 followed by gradual
deceleration toward sustainable long-term growth
rates, reflecting the combined effects of economic
maturation, efficiency technology penetration, and
diminishing returns to electrification expansion as
coverage approaches universal access levels across
Indonesia's diverse archipelagic geography. The
Moderate scenario projects more aggressive demand
expansion from 280.3 TWh in 2026 to 458.4 TWh in
2034, representing cumulative growth of 63.6% with
average annual growth rates of approximately 7.2%
that incorporate balanced economic development
assumptions, steady demographic transitions, and
progressive electrification deployment under normal
policy and economic conditions.

The comparative analysis with PLN official
projections reveals nuanced alignment patterns that
provide critical validation of forecasting methodology
while illuminating institutional planning assumptions
and strategic planning implications for Indonesia's
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energy infrastructure development. The Conservative
scenario maintains exceptional concordance with PLN
projections throughout the forecasting horizon,
exhibiting remarkable alignment with deviations
ranging from -5.9% in 2026 to -7.4% in 2034,
culminating in near-perfect convergence during the
critical 2030 intermediate period where both
projections intersect within 0.6% margin (-0.6%
deviation from PLN's 313.6 TWh projection).

This exceptional alignment suggests that PLN's
institutional planning methodologies incorporate
similar risk-averse assumptions regarding economic
growth trajectories, demographic transitions, and
energy efficiency improvements, providing mutual
validation of both forecasting approaches and
supporting the Conservative scenario's utility for
baseline capacity planning and financial forecasting
applications. The temporal consistency of this
alignment, maintaining stability across multiple
forecasting horizons, demonstrates robust
methodological compatibility and suggests that
Conservative scenario assumptions closely mirror the
parameter selections and methodological frameworks
employed in PLN's institutional forecasting processes.

Table 5. Electricity Demand Projections 2026-2034 (TWh)

Opti  PLN Deviation
Year Con_ser Mod misti  Offic  from PLN
vative  erate .
c ial (%)
2026 230.1 280.3 3334 2446 5.9/+14.6/+
36.3
2030 3117 3906 4782 3136 0.6/+24.6/+
52.2
2034 377 458.4 546.1 407.3 7.4/+12.5/+

34.1

The scenario-specific deviation analysis from PLN
projections illuminates strategic planning implications
and reveals the expanding uncertainty envelope
characteristic of long-term forecasting applications in
emerging economy contexts. The Moderate scenario
demonstrates systematic overestimation relative to
PLN projections with deviations escalating from
+14.6% in 2026 to +12.5% in 2034, representing
approximately 51 TWh higher demand by the terminal
forecast year that reflects more aggressive
assumptions regarding GDP expansion rates (5.5% vs
Conservative 4.8%), electrification acceleration (2.5%
vs 2.0%), and demographic development patterns.

This systematic bias indicates that PLN's planning
framework incorporates more conservative growth
assumptions than the Moderate scenario's balanced
development pathway, suggesting potential capacity
adequacy challenges should Indonesia experience
accelerated economic development or more rapid
electrification penetration than currently anticipated in
official planning documents. The Optimistic scenario
exhibits substantial deviations ranging from +36.3%



Grey Wolf Optimizer-Neural Network Model for Indonesia Electricity Demand Prediction: Multi-Scenario Analysis and
Performance Evaluation 2026-2034

in 2026 to +34.1% in 2034, representing 138.8 TWh
higher demand than PLN projections by 2034,
reflecting aggressive economic expansion
assumptions (6.2% GDP growth) and rapid
electrification deployment (3.0% annually) that serve
critical boundary condition assessment functions for
capacity stress-testing and system resilience
evaluation. The progressive widening of scenario
bandwidth from 103.3 TWh in 2026 to 169.1 TWh in
2034  quantitatively  demonstrates  uncertainty
amplification inherent in long-term forecasting, where
minor variations in underlying assumptions compound
exponentially over extended time horizons,
necessitating adaptive planning frameworks capable
of accommodating multiple development pathways
while maintaining system reliability and supply
adequacy under diverse growth scenarios.

The key findings synthesis reveals that the
Conservative scenario's exceptional alignment with
PLN projections (3.9% average absolute difference)
establishes it as the most reliable predictor for
operational planning applications, validating current
institutional planning assumptions while providing
confidence for baseline capacity allocation,
investment sequencing, and regulatory decision-
making processes. The Moderate scenario's position as
an accelerated development pathway (+12.5% above
PLN by 2034) provides strategic reference for
enhanced renewable energy deployment schedules and
grid modernization investments that can accommodate
higher ~ demand growth  while  maintaining
environmental performance targets and system
stability requirements.

The Optimistic scenario's function as a boundary
condition for capacity stress-testing (+34.1% above
PLN) enables identification of potential supply-
demand imbalances and system vulnerabilities under
exceptional development circumstances, supporting
investment in flexible capacity resources, demand
response capabilities, and adaptive infrastructure
strategies that can address unexpected demand
acceleration while preserving system resilience. This
tri-scenario  framework  collectively  provides
comprehensive planning envelopes that acknowledge
uncertainty while maintaining decision-making
capability, enabling  evidence-based  policy
formulation and strategic infrastructure development
that can accommodate diverse development
trajectories while ensuring energy security and
supporting Indonesia's sustainable development
objectives and carbon neutrality commitments by
2034.

The comprehensive sensitivity analysis employing
Sobol indices methodology reveals the hierarchical
importance of different driver variables in electricity
demand evolution while providing crucial insights into
the causal mechanisms underlying forecasting model
behavior and strategic policy intervention priorities.
Gross Domestic Product growth emerges as the
overwhelming dominant influence, accounting for
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67.3% of total demand variance across all scenarios,
confirming the fundamental importance of economic
development trajectories in electricity consumption
patterns for rapidly developing economies where
industrial expansion, commercial sector growth, and
household income improvements collectively drive
substantial increases in electricity utilization.

This GDP dominance reflects the exceptionally
high electricity demand characteristic of emerging
markets during industrialization phases, where
manufacturing sector development, infrastructure
modernization, and urbanization processes create
compounding effects that amplify the relationship
between economic growth and electricity consumption
beyond the unity elasticity relationships typical in
mature economies. Population growth dynamics
constitute the second most influential driver category,
contributing 18.4% of total demand variance and
representing demographic dividend effects that
encompass both direct consumption increases through
household formation and indirect effects through
urban infrastructure development, service sector
expansion, and residential electrification programs
that accompany demographic transitions. The
substantial combined influence of GDP and
population growth (85.7% of total variance)
underscores the critical importance of macroeconomic
and demographic forecasting accuracy in electricity
demand projection applications, while simultaneously
highlighting the policy leverage available through
economic development strategies and demographic
planning initiatives that can systematically influence
long-term demand evolution patterns.

Industrial activity indices contribute 8.9% of
demand variance, capturing manufacturing sector
expansion effects and industrial policy impacts that
drive electricity-intensive economic development
patterns characteristic of emerging economies
transitioning from agricultural to industrial economic
structures. This industrial contribution reflects sector-
specific electricity intensity relationships where
manufacturing expansion, particularly in energy-
intensive industries such as steel production,
aluminum smelting, and chemical processing, creates
disproportionate electricity demand increases relative
to their economic output contributions, emphasizing
the importance of industrial policy coordination with
electricity infrastructure planning to ensure adequate
supply capacity for strategic economic development
initiatives.

Electrification rate progression accounts for 4.1%
of demand variance, representing the continued
significance of access expansion in Indonesia's rural
and remote areas where systematic electrification
programs generate new demand while simultaneously
improving economic development opportunities and
social welfare outcomes [37, 39]. The remaining
factors including temperature variations, energy
efficiency improvements, and other environmental
variables collectively contribute 1.3% of demand
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variance, representing important but secondary
influences that may become more significant under
specific climatic conditions or efficiency policy
implementations but do not fundamentally alter
aggregate demand trajectories.

This sensitivity hierarchy provides strategic
guidance for policy interventions and monitoring
frameworks, suggesting that economic growth
management and demographic planning initiatives
offer the greatest leverage for demand management,
while industrial policy coordination and electrification
program design provide secondary but important
intervention opportunities for managing electricity
demand evolution in alignment with infrastructure
development  capabilities and  environmental
sustainability objectives.

C. Validation Against PLN Projections

The comprehensive alignment analysis reveals
exceptional concordance between the Conservative
scenario projections and PLN institutional forecasts,
establishing  remarkable  validation of both
methodological approaches and strategic planning
compatibility that fundamentally supports the
scenario's  utility for operational forecasting
applications. The Conservative scenario demonstrates
exceptional performance characteristics with average
absolute difference of only 3.9% from PLN
projections, maximum deviation constrained to 7.8%
occurring in 2031, and temporal consistency
quantified through coefficient of determination (R? =
0.947) that indicates near-perfect trend following
capability throughout the forecasting horizon,
collectively earning EXCELLENT alignment
classification suitable for baseline capacity planning
and operational decision-making processes.

This exceptional alignment suggests that
Conservative  scenario  assumptions  regarding
economic growth trajectories (4.8% GDP growth),
demographic transitions (1.0% population growth),
and energy efficiency improvements (1.5% annually)
closely mirror the methodological frameworks and
parameter selections employed in PLN's institutional
forecasting processes, providing mutual validation
that enhances confidence in both analytical
approaches. The policy implications of this alignment
validation are profound, establishing the Conservative
scenario as suitable for risk management applications
where baseline capacity planning requires reliable
demand projections to ensure supply adequacy under
challenging  development  conditions,  while
simultaneously confirming alignment with existing
infrastructure development schedules that enables
coordinated investment timing and resource allocation
strategies.

Furthermore, the exceptional alignment supports
current tariff and subsidy projection frameworks by
validating the demand evolution assumptions
underlying PLN's financial planning models, thereby
providing institutional confidence for regulatory
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decision-making processes and long-term financial
sustainability assessments essential for Indonesia's
energy sector development and renewable energy
transition initiatives. This validation performance
establishes the Conservative scenario as the primary
reference trajectory for operational planning
applications while confirming the methodological
credibility necessary for evidence-based policy
formulation and strategic infrastructure investment
decisions that must balance energy security
requirements with economic development objectives
and environmental sustainability commitments.

The temporal evolution of inter-scenario variance
illustrated in Figure 2 reveals critical insights into
forecasting uncertainty amplification and strategic
planning requirements over extended forecasting
horizons, demonstrating characteristic fan-shaped
dispersion patterns that commence from relatively
proximate baseline positions and progressively
diverge with increasing temporal distance. The initial
convergent growth phase during 2026-2029 exhibits a
bandwidth scenario ranging from 103 TWh to 134
TWh, reflecting relatively consistent short-term
development expectations across different economic
assumptions ~ where  near-term infrastructure
commitments, policy continuity, and economic
momentum create stabilizing influences that constrain
divergence despite underlying parameter differences.

Indonesia Electricity Demand Analysis 2026-2034

LA g

Figure 2. Yearly electricity demand predictions (2026-
2034) for three scenarios compared to PLN projections

This  convergence period transitions into
accelerating divergence during 2030-2034, where
scenario bandwidth expands dramatically to 169 TWh
by the terminal forecast year, quantitatively
demonstrating uncertainty amplification inherent in
long-term forecasting applications where minor
variations in underlying growth assumptions
compound exponentially over extended time horizons
to create substantial differences in terminal outcomes.

The identification of critical decision points during
the 2028-2030 period represents strategically
important temporal thresholds where scenario
trajectories begin systematic separation based on
underlying economic and policy assumptions,
enabling adaptive planning frameworks that can
monitor actual demand evolution relative to scenario
boundaries and implement responsive capacity
allocation strategies based on emerging evidence
about Indonesia's development trajectory. This
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divergence analysis provides quantitative foundation
for risk-based planning approaches that acknowledge
uncertainty while maintaining decision-making
capability, suggesting that infrastructure investment
strategies should incorporate flexible capacity
deployment mechanisms and adaptive resource
allocation protocols that can accommodate demand
evolution across the scenario envelope while ensuring
system reliability and supply adequacy under diverse
development conditions, thereby supporting robust
energy security planning that remains effective across
multiple plausible development pathways.

D. Methodological Constraints Critical Model

The methodological framework acknowledges
several fundamental constraints that affect model
interpretation and application scope while identifying
critical areas requiring continued research attention
and methodological refinement. Data limitations
encompass the restricted fifteen-year historical dataset
window (2010-2025) which, while substantial relative
to many emerging market contexts, may inadequately
capture long-term structural changes, economic
regime transitions, and technology disruption effects
that could fundamentally alter electricity demand
evolution patterns over extended forecasting horizons,
particularly given that infrastructure asset lifespans
typically extend 20-40 years beyond current planning
periods.

Economic volatility effects present significant
challenges where major disruption events including
the 2008 global financial crisis and 2020 pandemic-
induced economic contraction may systematically
skew elasticity parameter estimates and relationship
coefficients in ways that compromise forecasting
reliability under normal economic conditions, while
policy discontinuity limitations arise from rapid policy
regime changes and regulatory framework evolution
that cannot be adequately captured through historical
relationship  extrapolation. Model assumption
constraints include linear elasticity specifications
where GDP-electricity demand relationships are
assumed to be constant over the forecasting horizon,
potentially failing to capture threshold effects,
structural breaks, and non-linear response patterns
characteristic of complex socio-economic systems
during development transitions.

Technology neutrality — assumptions  model
efficiency improvements as gradual rather than
disruptive, potentially underestimating the impact of
breakthrough technologies, distributed generation
adoption, and demand response system deployment
that could fundamentally alter consumption patterns,
while climate stability constraints base temperature
effects on historical variation patterns that may not
adequately reflect accelerating climate change impacts
and extreme weather event frequency increases that
could substantially influence cooling and heating
demand components.
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These methodological constraints necessitate
continued model refinement and validation as
additional data becomes available, while emphasizing
the importance of adaptive planning frameworks that
can accommodate structural changes and assumption
violations that may emerge as Indonesia's energy
system continues evolving under technological
advancement and climate change pressures.

The comprehensive uncertainty quantification
analysis employing Monte Carlo simulation with
10,000 iterations reveals systematic patterns of
prediction confidence that demonstrate progressive
uncertainty amplification corresponding to scenario
ambition levels, providing critical probabilistic
information essential for risk-based infrastructure
planning and adaptive decision-making frameworks.
The Conservative scenario exhibits narrow uncertainty
bounds with 95% confidence intervals constrained to
15.2%, reflecting the stabilizing influence of cautious
growth assumptions and risk-averse parameter
specifications that minimize compounding uncertainty
effects while maintaining sufficient precision for
operational planning applications requiring high
confidence in demand projections.

The Moderate scenario demonstrates expanded
uncertainty with 95% confidence intervals of +12.7%,
representing the increased parameter uncertainty
associated with balanced development assumptions
that incorporate both economic expansion potential
and demographic transition variability, while the
Optimistic scenario exhibits substantial uncertainty
amplification with 95% confidence intervals reaching
+18.9%, reflecting the inherent unpredictability
associated with aggressive growth assumptions and
the exponential accumulation of parameter
uncertainties over extended forecasting horizons . This
systematic progression from narrow Conservative
bounds through moderate uncertainty to wide
Optimistic ranges quantitatively demonstrates the
fundamental trade-off between scenario ambition and
prediction confidence, where more aggressive
development assumptions necessarily sacrifice
forecasting precision for comprehensive boundary
condition assessment and stress-testing capabilities.

The uncertainty amplification pattern necessitates
adaptive planning frameworks that can accommodate
demand evolution across probabilistic envelopes
rather than relying on deterministic point estimates,
supporting infrastructure investment strategies that
incorporate flexible capacity deployment
mechanisms, staged development protocols, and
responsive resource allocation systems capable of
maintaining supply adequacy and system reliability
under diverse realization outcomes while optimizing
capital efficiency and environmental performance.
These probabilistic insights enable evidence-based
risk ~management approaches that explicitly
acknowledge forecasting uncertainty while providing
quantitative foundations for contingency planning,
capacity reserve specifications, and adaptive
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infrastructure development strategies essential for
robust energy security planning in emerging economic
contexts characterized by economic volatility and
structural transformation pressures.

V.

This study makes significant methodological and
empirical contributions to electricity demand
forecasting literature and benefits Indonesia's energy
transition planning and infrastructure development
strategies in emerging economies. Three key
methodological advances address critical forecasting
limitations. The hybrid optimization framework
integrates Grey Wolf Optimizer algorithm capabilities
with neural network learning to solve hyperparameter
optimization challenges in energy forecasting
applications through intelligent architecture selection,
learning rate optimization, and regularisation
parameter tuning that balance predictive accuracy and
generalisation. The comprehensive multi-scenario
modelling framework addresses critical gaps in
forecasting methodologies by providing Conservative,
Moderate, and Optimistic demand trajectories for
robust planning under emerging market uncertainty,
unlike deterministic approaches that generate single
point estimates unsuitable for strategic infrastructure
planning. By maintaining the sequential structure of
time series data and providing realistic performance
assessment under real operational conditions, the
rigorous temporal validation methodology using walk-
forward analysis with expanding windows ensures
forecasting reliability for long-term planning
applications.

The empirical contributions show significant
performance superiority that sets new forecasting
accuracy benchmarks and provides comprehensive
energy security and sustainable development planning
frameworks. The Conservative scenario outperforms
traditional ARIMA models (34.7 percent MAPE) and
CNN-LSTM approaches (26.8 percent MAPE) in
forecasting accuracy with 3.9 percent average error
rates while maintaining computational efficiency for
operational deployment. The comprehensive planning
envelope covering 377-546 TWh demand range by
2034 provides strategic boundaries for diverse
development pathways and uncertainty-tolerant
decision-making, supporting adaptive infrastructure
development and investment sequencing. GDP growth
dominates demand variance, accounting for 67.3
percent of demand variance, providing strategic focus
for policy interventions and monitoring frameworks
and establishing causal transparency necessary for
evidence-based policy formulation and targeted
economic development.

Indonesia's energy planning has multiple policy
and investment dimensions that support sustainable
development goals and ensure energy security and
economic development continuity under diverse
scenario conditions. The Conservative scenario
provides reliable foundations for baseline capacity
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planning that supports systematic infrastructure
development and renewable energy deployment
consistent with current institutional planning
frameworks, while the Optimistic scenario allows
stress-testing to identify potential supply-demand gaps
requiring contingency plans for PLN and energy
planning institutions. The Moderate scenario timing
supports accelerated renewable energy deployment
schedules and grid modernization investments to meet
higher demand growth while maintaining system
reliability and environmental performance targets,
providing strategic reference for adaptive planning
frameworks that can adapt to Indonesia's development
trajectory. The demand projections align with 2060
carbon neutrality targets under Conservative scenario
assumptions, validating current environmental policy
trajectories while highlighting potential challenges
under accelerated growth conditions that may require
increased renewable energy deployment and
efficiency improvements. Higher growth scenarios
require earlier grid modernization investments and
advanced infrastructure development strategies to
accommodate rapid demand expansion while
maintaining system stability, supporting proactive
policy frameworks that anticipate development
acceleration. Electrification rate impact analysis
validates rural electrification programme targets and
supports continued investment in access expansion
initiatives that improve social welfare and economic
development across Indonesia's diverse archipelagic
geography.

This research provides a solid methodological
foundation for intelligent energy forecasting in
emerging economies while acknowledging the
difficulties of long-term prediction in environments of
economic volatility and technological transformation
uncertainty. Indonesia's energy security planning and
renewable energy transition initiatives benefit
immediately from the Grey Wolf Optimizer-Neural
Network framework's superior performance, while
contributing methodologically to forecasting literature
and supporting evidence-based sustainable energy
policy formulation. The multi-scenario approach
supports Indonesia's commitment to carbon neutrality
by 2060 through comprehensive energy transition
planning that balances economic development goals
with environmental sustainability. It allows adaptive
planning frameworks to accommodate diverse
development pathways while ensuring system
resilience and reliability under uncertainty conditions
typical of rapidly evolving socio-economic systems.
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