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Abstract – Indonesia's rapid economic development 

and energy transition goals necessitate accurate long-

term electricity demand forecasting to ensure supply 

security while optimizing infrastructure investments. 

This study addresses critical gaps in existing forecasting 

methodologies by developing a hybrid Grey Wolf 

Optimizer-Neural Network (GWO-NN) model 

specifically designed for emerging economy 

characteristics. While recent deep learning approaches 

(LSTM, CNN-LSTM) show promise for short-term 

forecasting, they often fail in long-term predictions due 

to limited adaptability to economic volatility and 

infrastructure constraints typical in developing nations. 

Our GWO-NN framework overcomes these limitations 

through intelligent hyperparameter optimization and 

multi-scenario modeling that captures Indonesia's 

unique socio-economic dynamics. The model 

incorporates 15 years of historical data (2010-2025) 

across seven key variables: GDP growth, population 

dynamics, temperature variations, industrial activity, 

urbanization rates, energy efficiency, and electrification 

progress. Rigorous validation against PLN's official 

projections reveals superior performance: Conservative 

scenario achieves exceptional 3.9% average absolute 

difference, Moderate scenario 19.0%, demonstrating 

significant improvement over traditional ARIMA 

models (>35% error) and recent CNN-LSTM 

approaches (>25% error). The 2034 demand projections 

range from 377.0 TWh (Conservative) to 546.1 TWh 

(Optimistic), providing policymakers with robust 

planning envelopes. This research contributes 

methodologically through hybrid metaheuristic 

optimization and practically through evidence-based 

planning support for Indonesia's renewable energy 

transition and carbon neutrality targets by 2060. 
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I. INTRODUCTION 

Indonesia's energy landscape is undergoing 

unprecedented transformation as the world's fourth-

largest population and Southeast Asia's largest 

economy grapples with surging electricity demand 

while pursuing ambitious decarbonization goals. The 

National Electricity Supply Business Plan (RUPTL) 

projects demand reaching 410 TWh by 2034—a 67% 

increase from current levels—yet traditional 

forecasting methods consistently underperform in 

capturing the complex, non-linear relationships 

characteristic of rapidly developing economies [1]. 

This forecasting accuracy gap poses significant risks 

to energy security, infrastructure investment 

efficiency, and climate commitments, necessitating 

advanced analytical frameworks capable of handling 

economic volatility, demographic transitions, and 

policy uncertainties inherent in emerging markets. 

Critical Literature Review and Research Gaps 

Recent advances in electricity demand forecasting 

have been dominated by deep learning approaches, yet 
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significant methodological gaps persist when applied 

to developing economic contexts. Table 1 presents a 

comprehensive comparison of existing forecasting 

methodologies and their limitations. 
 

Table 1. Comparative Analysis of Electricity Demand Forecasting Methods 

Method 
Time 

Horizon 

Accuracy 

(MAPE) 
Strengths Critical Limitations References 

ARIMA Short-term 15-25% Simple, 

interpretable 

Cannot capture non-linear 

patterns, poor with 

structural breaks 

[2, 3] 

CNN-

LSTM 

Short-

medium 

8-15% Captures 

temporal patterns 

Requires large datasets, 

limited economic variable 

integration 

[3-5] 

LSTM-

Attention 

Medium 10-18% Long memory, 

attention 

mechanism 

Computationally 

expensive, black-box 

nature 

[6, 7] 

Ensemble 

(RF+SVM) 

Medium 12-20% Robust to outliers Limited scenario modeling 

capabilities 

[1, 8] 

Transformer 

Models 

Short-

medium 

6-12% State-of-the-art 

for sequence 

modeling 

Data hungry, poor 

extrapolation beyond 

training range 

[9, 10] 

GWO-NN 

(This 

Study) 

Long-term 3.9-19% Multi-scenario, 

economic 

integration, 

hyperparameter 
optimization 

Computational complexity Current 

Economic Integration Deficit in Contemporary Deep 

Learning Approaches 

The first fundamental limitation concerns the 

inadequate integration of macroeconomic variables 

within contemporary deep learning architectures, 

representing a critical methodological gap that 

compromises forecasting reliability in emerging 

economy contexts. While Convolutional Neural 

Network-Long Short-Term Memory (CNN-LSTM) 

models demonstrate exceptional pattern recognition 

capabilities for identifying temporal dependencies and 

cyclical patterns within historical electricity 

consumption data, they exhibit systematic deficiencies 

in capturing the causal relationships between 

macroeconomic drivers and electricity demand 

evolution that are particularly pronounced in rapidly 

developing economies [11]. This economic integration 

deficit manifests most critically in the treatment of 

Gross Domestic Product (GDP) elasticity 

relationships, where electricity demands 

responsiveness to economic growth frequently 

exceeds unity elasticity coefficients (often reaching 

1.5-2.0) in emerging markets due to rapid 

industrialization, infrastructure development, and 

household electrification processes that accompany 

economic development transitions [12].  

Traditional deep learning approaches treat 

economic variables as additional input features 

without explicit recognition of their functional 

relationships and threshold effects, thereby failing to 

capture the non-linear economic mechanisms that 

drive electricity demand evolution during different 

development phases [11]. Furthermore, these models 

inadequately incorporate the sectoral composition 

effects of economic growth, where manufacturing 

expansion, service sector development, and 

agricultural modernization exhibit differentiated 

electricity demand implications that vary 

systematically across development stages. The 

absence of explicit economic modeling within deep 

learning frameworks compromises their ability to 

generate credible long-term projections under 

scenarios involving economic structural 

transformation, policy regime changes, or external 

economic shocks that fundamentally alter electricity 

demand elasticity relationships [3]. This limitation 

becomes particularly problematic in emerging 

economies like Indonesia, where rapid economic 

development creates dynamic elasticity patterns that 

cannot be adequately captured through purely 

statistical pattern recognition approaches without 

explicit economic theoretical grounding. 

Scenario Modeling Limitations and Planning 

Framework Inadequacies 

The second critical methodological gap 

encompasses the systematic limitations of existing 

deep learning approaches in providing scenario-based 

forecasting frameworks essential for strategic 

infrastructure planning under uncertainty conditions 

[11]. Contemporary neural network architectures, 

including advanced LSTM and Transformer-based 

models, predominantly generate deterministic point 

estimates that inadequately reflect the range of 

possible future outcomes under different economic, 

demographic, and policy conditions characteristic of 

emerging market environments [13].  

This scenario modeling deficit represents a 

fundamental disconnect between forecasting 
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methodology capabilities and practical planning 

requirements, where infrastructure investment 

decisions necessitate comprehensive risk assessment 

across multiple development pathways rather than 

single-trajectory predictions. The absence of 

systematic scenario generation capabilities limits the 

utility of existing forecasting frameworks for capital 

allocation decisions, capacity planning optimization, 

and regulatory policy formulation that must account 

for uncertainty in future demand evolution [13]. 

Infrastructure investments in electricity generation, 

transmission, and distribution systems typically 

involve substantial capital commitments with asset 

lifespans extending 20-40 years, creating critical 

requirements for forecasting methodologies that can 

quantify demand evolution boundaries under different 

development assumptions.  

The deterministic nature of conventional deep 

learning predictions fails to provide the probabilistic 

information essential for risk-based planning 

approaches that can optimize infrastructure 

deployment timing, capacity sizing, and technology 

selection decisions under uncertainty. Furthermore, 

the lack of explicit scenario modeling capabilities 

compromises the ability to conduct stress-testing 

analyses that identify system vulnerabilities under 

extreme conditions, limiting preparedness for demand 

acceleration scenarios that could threaten supply 

adequacy. This limitation becomes particularly 

problematic in emerging economies where economic 

volatility, policy discontinuities, and external shocks 

create substantial uncertainty around long-term 

development trajectories, necessitating robust 

planning frameworks that can accommodate multiple 

possible futures while maintaining decision-making 

capability under ambiguous conditions. 

Hyperparameter Optimization Challenges and 

Architecture Selection Problems 

The third fundamental limitation involves the 

persistent challenges associated with hyperparameter 

optimization and neural network architecture selection 

that systematically compromise forecasting 

performance in energy applications [14]. Manual 

tuning approaches, which remain prevalent in energy 

forecasting literature, rely on trial-and-error 

methodologies and expert intuition that fail to 

systematically explore the high-dimensional 

parameter spaces characteristic of modern neural 

network architectures [15]. This optimization 

inadequacy becomes particularly problematic when 

applied to the limited historical datasets typical in 

emerging market contexts, where restricted data 

availability amplifies the importance of optimal 

parameter selection for achieving satisfactory 

generalization performance [15]. The hyperparameter 

optimization challenge encompasses multiple critical 

dimensions including network architecture 

specification (layer numbers, neuron counts, 

connection patterns), training parameter selection 

(learning rates, batch sizes, optimization algorithms), 

and regularization strategy implementation (dropout 

rates, weight decay coefficients, early stopping 

criteria) that collectively determines model 

performance outcomes. Traditional grid search and 

random search approaches prove computationally 

prohibitive for comprehensive parameter space 

exploration while frequently failing to identify 

globally optimal configurations due to their inability 

to exploit parameter interaction effects and 

dependency structures [16].  

The absence of systematic optimization 

methodologies leads to suboptimal model 

performance that compounds over extended 

forecasting horizons, where small improvements in 

prediction accuracy can translate into substantial 

planning benefits or cost avoidances [15]. 

Furthermore, manual hyperparameter selection 

approaches lack the adaptability required for dynamic 

model updating as new data becomes available, 

limiting the practical utility of forecasting systems in 

operational environments where regular model 

maintenance and performance optimization are 

essential. This optimization deficit becomes 

particularly acute in emerging economic applications 

where data quality issues, structural breaks, and 

economic regime changes require sophisticated 

parameter adaptation strategies that can maintain 

forecasting accuracy under evolving conditions. The 

systematic nature of these optimization challenges 

necessitates intelligent automated approaches that can 

efficiently explore parameter spaces while 

incorporating domain knowledge and performance 

constraints specific to electricity demand forecasting 

applications. 

Validation Methodology Weaknesses and Temporal 

Dependency Violations 

The fourth critical limitation encompasses the 

widespread adoption of inappropriate validation 

methodologies that systematically violate temporal 

dependency assumptions inherent in time series 

forecasting applications, thereby generating overly 

optimistic performance assessments that fail to reflect 

realistic forecasting challenges [17]. Standard cross-

validation approaches employing random train-test 

splits, while appropriate for independent and 

identically distributed data contexts, fundamentally 

violate the sequential structure of time series data by 

using future information to predict past outcomes, 

creating data leakage artifacts that artificially inflate 

performance metrics and compromise confidence in 

model reliability assessments [18].  

This validation methodology inadequacy manifests 

most severely in the treatment of temporal 

autocorrelation patterns, where electricity demand 

exhibits strong persistence effects and seasonal 

dependencies that create systematic relationships 

between successive observations [14]. The random 

splitting approaches disrupt these temporal 

relationships and enable models to exploit future 

information patterns that would be unavailable in 
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realistic forecasting scenarios, leading to performance 

evaluations that substantially overestimate predictive 

capabilities when applied to genuine out-of-sample 

forecasting tasks.  

Furthermore, most of the existing research lacks 

comprehensive benchmarking against institutional 

projections and alternative methodological 

approaches, limiting understanding of relative 

performance advantages and optimal application 

contexts for different forecasting techniques. The 

absence of rigorous temporal validation frameworks 

compromises the credibility of model comparison 

studies and limits the development of best-practice 

guidelines for forecasting methodology selection in 

different application contexts [14]. This validation 

inadequacy becomes particularly problematic for 

long-term forecasting applications where model 

performance must be assessed over extended horizons 

with limited opportunities for validation against 

realized outcomes.  

The temporal validation challenge is compounded 

in emerging economic contexts where structural 

breaks, policy regime changes, and economic 

development transitions create non-stationary 

conditions that require sophisticated validation 

approaches capable of assessing forecasting 

performance under evolving data generating 

processes. Additionally, most studies fail to 

implement walk-forward validation techniques that 

preserve temporal order while providing realistic 

assessment of forecasting accuracy under expanding 

information sets, limiting confidence in model 

performance estimates and practical applicability for 

operational forecasting systems. 

Novel Contributions and Research Objectives 

This research addresses the identified 

methodological and empirical gaps through four key 

innovations that advance both theoretical 

understanding and practical applicability of electricity 

demand forecasting in emerging economic contexts. 

The methodological contributions encompass three 

fundamental innovations that systematically address 

the critical limitations identified in existing literature. 

The integration of Grey Wolf Optimizer with neural 

networks represents a hybrid metaheuristic 

optimization approach that provides intelligent 

hyperparameter tuning capabilities, directly 

addressing the architecture selection challenge that 

consistently plagues deep learning applications in 

energy forecasting contexts. This optimization 

framework moves beyond traditional manual tuning 

approaches by systematically exploring high-

dimensional parameter spaces to identify optimal 

network configurations that balance predictive 

accuracy with generalization performance. The 

development of a comprehensive multi-scenario 

framework represents a significant departure from 

conventional point-estimate approaches by generating 

Conservative, Moderate, and Optimistic demand 

trajectories that enable robust planning under 

uncertainty conditions characteristic of emerging 

market environments [19]. This scenario-based 

methodology provides decision-makers with 

comprehensive planning envelopes that acknowledge 

uncertainty while maintaining analytical tractability 

for strategic infrastructure development and policy 

formulation. The explicit integration of economic-

physical modeling approaches represents a 

fundamental advancement in causal interpretability by 

incorporating GDP elasticity relationships, 

demographic multipliers, and efficiency factors within 

the neural network framework, thereby providing 

transparent causal mechanisms that are typically 

absent in black-box deep learning models. 

The empirical contributions of this research 

encompass two critical validation dimensions that 

establish credibility and practical applicability for 

operational forecasting applications. The 

implementation of comprehensive validation 

protocols involves rigorous comparison against PLN 

institutional projections, established baseline models 

including ARIMA approaches, and recent deep 

learning methodologies including CNN-LSTM 

architectures, employing temporal cross-validation 

frameworks that preserve the sequential structure of 

time series data while providing robust performance 

assessment. This multi-faceted benchmarking 

approach ensures that model performance claims are 

substantiated through systematic comparison against 

relevant alternatives rather than relying on isolated 

performance metrics that may not reflect comparative 

advantages. The establishment of long-term reliability 

validation represents a significant empirical 

advancement through demonstrated performance over 

nine-year forecasting horizons, substantially 

extending beyond the typical one to two-year 

validation periods characteristic of existing literature 

and providing confidence for strategic planning 

applications that require extended forecasting 

reliability [20, 21]. 

The primary research objectives driving this 

investigation encompass four interconnected goals 

that address both methodological advancement and 

practical application requirements in Indonesia's 

energy planning context. The development and 

validation of a GWO-optimized neural network model 

achieving superior long-term forecasting accuracy for 

Indonesia's electricity demand represents the core 

technical objective, requiring systematic optimization 

of network architectures and training procedures to 

achieve performance improvements over existing 

methodologies while maintaining computational 

efficiency suitable for operational deployment. The 

implementation of comprehensive multi-scenario 

modeling capturing economic, demographic, and 

policy uncertainties addresses the critical planning 

requirement for robust decision-making frameworks 

that can accommodate diverse development pathways 

while providing quantitative boundaries for risk 

assessment and contingency planning [4, 5]. The 
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establishment of rigorous benchmarking protocols 

against existing methodologies using temporal 

validation frameworks addresses the methodological 

credibility requirements by providing systematic 

performance comparison that identifies optimal 

application contexts for different forecasting 

approaches while establishing best-practice guidelines 

for methodology selection. The generation of 

actionable insights for Indonesia's energy transition 

planning and infrastructure investment strategies 

represents the practical application objective, 

requiring translation of forecasting results into policy-

relevant recommendations that support evidence-

based decision making in pursuit of sustainable energy 

development by 2035. 

II. METHOD 

A.  Data Collection and Preprocessing Framework 

This analysis utilizes a 15-year dataset (2010-

2025) compiled from multiple authoritative sources to 

ensure data quality and completeness (table 2)

 

Table 2. Data Sources and Variable Specifications 

Variable 
Category 

Specific Variables Data Source Frequency 
Missing 
Data (%) 

Imputation 
Method 

Electricity 

Demand 

Total consumption (TWh), Peak 

demand (GW) 

PLN Annual 

Reports, ESDM 
Annual 2.10% 

Linear 

interpolation 

Economic 

Indicators 

GDP growth (%), Industrial 

production index, Per capita 

income 

BPS Statistics Annual 0.80% 

Economic 

model 

interpolation 

Demographic 

Variables 

Population growth (%), 

Urbanization rate (%), 

Household formation 

BPS Census 

Data 
Annual 1.30% 

Demographic 

projection 

Environmental 

Factors 

Temperature variations (°C), 

Climate indices 
BMKG, NOAA Annual 3.20% 

Climatological 

averaging 

Infrastructure 

Metrics 

Electrification rate (%), Grid 

connectivity (%) 
PLN, ESDM Annual 1.70% 

Infrastructure 

modeling 

The comprehensive data foundation underlying 

this research encompasses five distinct variable 

categories systematically compiled from authoritative 

Indonesian institutional sources, demonstrating 

exceptional data quality and methodological rigor 

essential for robust forecasting model development. 

Electricity demand variables, representing the core 

dependent measures including total consumption 

expressed in terawatt-hours and peak demand 

measured in gigawatts, are sourced from PLN Annual 

Reports and Ministry of Energy and Mineral 

Resources (ESDM) databases with annual frequency 

[22], exhibiting minimal missing data proportions of 

2.1% that are addressed through linear interpolation 

techniques validated against regional consumption 

patterns as documented in the Handbook of Energy 

and Economic Statistics of Indonesia [23].  

Economic indicators encompassing GDP growth 

rates, industrial production indices, and per capita 

income trajectories are systematically extracted from 

Central Bureau of Statistics (BPS) comprehensive 

databases, demonstrating exceptional completeness 

with only 0.8% missing observations that are 

addressed through sophisticated economic model 

interpolation techniques preserving underlying trend 

relationships and cyclical patterns as outlined in the 

Statistical Yearbook of Indonesia [24]. Demographic 

variables capturing population growth dynamics, 

urbanization progression rates, and household 

formation patterns are compiled from BPS Census 

databases with 1.3% missing data addressed through 

cohort-component demographic projection 

methodologies that maintain demographic transition 

consistency while incorporating migration effects and 

urban-rural population shifts following established 

demographic analysis frameworks [25].  

Environmental factors including temperature 

variations measured in degrees Celsius and 

comprehensive climate indices are sourced from 

Indonesian Meteorological, Climatological, and 

Geophysical Agency (BMKG) databases 

supplemented by NOAA climatological records, 

exhibiting higher missing rates of 3.2% due to 

monitoring infrastructure limitations, addressed 

through climatological averaging techniques 

employing thirty-year normal periods and spatial 

interpolation methods that preserve regional climate 

variation patterns in accordance with World 

Meteorological Organization standards [25].  

Infrastructure development metrics encompassing 

electrification rate progression and grid connectivity 

expansion percentages are systematically compiled 

from PLN operational reports and ESDM 

infrastructure databases [39], demonstrating moderate 

data completeness with 1.7% missing observations 

addressed through infrastructure development 

modeling techniques that capture systematic 

progression of electrification programs and grid 

expansion initiatives across Indonesia's diverse 

archipelagic geography as documented in the 

Indonesia Energy Transition Outlook [26]. 

Data Quality Assessment and Preprocessing 

The data quality assessment and preprocessing 

framework employs sophisticated analytical 
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techniques designed to address missing value 

challenges while optimizing variable representations 

for robust neural network training and forecasting 

performance. Missing value treatment utilizes 

advanced imputation methodologies specifically 

tailored to the characteristics and temporal 

dependencies inherent in different variable categories, 

ensuring that data completion procedures preserve 

underlying statistical relationships and temporal 

consistency patterns [27, 28].  

Economic variables benefit from Kalman filtering 

approaches integrated with macroeconomic constraint 

mechanisms that maintain theoretical consistency with 

established economic relationships while providing 

optimal estimates for missing observations based on 

state-space modeling principles that account for 

economic cycle dynamics and structural 

interdependencies among macroeconomic indicators 

[27]. Demographic data gaps are systematically 

addressed through cohort-component population 

projection techniques that preserve demographic 

transition consistency by modeling age-specific 

fertility, mortality, and migration patterns, ensuring 

that imputed values reflect underlying demographic 

processes rather than purely statistical interpolation 

that might violate demographic accounting principles 

as established in the Statistical Yearbook of Indonesia 

methodological frameworks [24].  

Environmental data missing observations are 

treated through climatological normal averaging 

procedures employing thirty-year reference periods 

that capture natural climate variability while providing 

statistically robust estimates that maintain seasonal 

patterns and long-term climate trends essential for 

accurate temperature-related demand modeling, 

following established meteorological standards [25]. 

The feature engineering process encompasses four 

critical transformation stages designed to capture 

temporal dependencies, economic relationships, and 

seasonal patterns while optimizing variable 

representations for neural network learning efficiency 

and forecasting accuracy [27, 28].  

Temporal dependency creation involves systematic 

generation of one to three-year lagged variables that 

capture demand persistence effects and economic 

momentum patterns, recognizing that electricity 

consumption exhibits strong autocorrelation 

characteristics reflecting both short-term operational 

continuity and medium-term economic development 

trajectories that influence consumption evolution [27]. 

Economic elasticity quantification employs 

cointegration analysis methodologies to calculate 

GDP-electricity demand elasticity relationships while 

controlling demographic and environmental 

confounding factors, ensuring that elasticity estimates 

reflect long-term structural relationships rather than 

spurious correlations that might compromise 

forecasting reliability under different economic 

scenarios [29].  

Seasonal adjustment procedures implement 

temperature normalization techniques utilizing 

cooling and heating degree day calculations that 

remove weather-related demand fluctuations while 

preserving underlying economic and demographic 

trend patterns, enabling the model to distinguish 

between systematic demand growth and random 

meteorological variations that could otherwise 

introduce noise into long-term forecasting applications 

following established climatological analysis 

frameworks [25]. Variable normalization employs 

Min-Max scaling transformation procedures that 

convert all input variables to standardized (0,1) ranges, 

ensuring neural network training stability by 

eliminating scale disparities among different variable 

categories while preserving relative magnitude 

relationships and variation patterns essential for 

effective pattern recognition and learning convergence 

during the optimization process [27]. 
B.  Simplified Neural Network Architecture 

Neural network architecture employs a 

strategically streamlined three-layer design optimized 

for interpretability, computational efficiency, and 

forecasting performance while avoiding the excessive 

complexity that often compromises generalization 

capability in limited data contexts characteristic of 

emerging market applications [5, 7]. The input layer 

systematically incorporates fourteen normalized 

variables representing comprehensive coverage of 

electricity demand drivers across multiple analytical 

dimensions, encompassing four economic indicators 

including GDP growth rates, industrial production 

indices, per capita income trajectories, and sectoral 

development metrics that capture macroeconomic 

influences on electricity consumption patterns.  

The input architecture further integrates three 

demographic variables comprising population growth 

rates, urbanization progression patterns, and 

household formation dynamics that reflect population-

driven demand evolution, complemented by two 

environmental factors including temperature 

variations and climate indices that account for 

weather-sensitive consumption components [30]. 

Infrastructure development variables encompass two 

critical metrics representing electrification rate 

progression and grid connectivity expansion that 

capture supply-side accessibility constraints, while 

temporal dependency modeling incorporates three 

lagged demand variables spanning one to three-year 

historical periods that capture persistence effects and 

economic momentum patterns essential for accurate 

long-term forecasting performance [10]. 

The hidden layer configuration employs variable 

neuron architectures ranging from ten to one hundred 

neurons, with optimal specifications determined 

through systematic Grey Wolf Optimizer search 

procedures that explore the fundamental bias-variance 

trade-off inherent in neural network complexity 

selection while ensuring computational efficiency 

suitable for operational deployment [13]. Hidden layer 
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neurons implement hyperbolic tangent activation 

functions that provide essential non-linear 

transformation capabilities while maintaining gradient 

stability during backpropagation training procedures, 

following the mathematical formulation:  

𝑎𝑗
(1)

= 𝜎(𝑧𝑗
(1)

) = 𝑡𝑎𝑛ℎ(𝑧𝑗
(1)

), 𝑗 = 1,2, … , 𝐻 (1) 

where h_j represents the j-th hidden neuron output, 

w_ij denotes input-to-hidden connection weights, x_i 

represents normalized input variables, and b_j 

represents hidden layer bias terms that enable flexible 

decision boundary formation [5].  

The output layer employs a single neuron 

configuration with linear activation function 

specifically optimized for continuous electricity 

demand prediction applications, avoiding saturation 

effects that can compromise regression performance in 

bounded activation functions while maintaining 

numerical stability across different demand magnitude 

ranges. The output computation follows the linear 

combination formulation  

𝑦 = 𝑓 (∑ 𝜔𝑗
(2)

𝐻

𝑗=1

∙ 𝜎 (∑ 𝜔𝑖𝑗
(1)

𝐼

𝑖=1

𝑥𝑖 + 𝑏𝑗
(1)

)

+ 𝑏(2)) 

(2) 

where y represents the predicted electricity demand 

measured in terawatt-hours, w_j denotes hidden-to-

output connection weights, h_j represents hidden layer 

activation outputs, and b_output represents the output 

bias term that provides baseline adjustment capability 

[7]. This architectural configuration ensures 

computational efficiency essential for operational 

forecasting applications while maintaining sufficient 

non-linear modeling capacity for complex demand 

pattern recognition and long-term trend extrapolation 

under diverse economic and demographic scenarios 

[10, 13]. 

Temporal Cross-Validation: 

Walk-forward analysis with expanding windows: 

1. Training: Years t to t+k 

2. Validation: Year t+k+1 

3. Testing: Year t+k+2 

The temporal cross-validation framework employs 

sophisticated walk-forward analysis methodologies 

specifically designed for time series applications, 

addressing the fundamental violations of 

independence assumptions inherent in standard cross-

validation procedures when applied to sequential data 

with temporal dependencies [10, 26]. This validation 

approach implements expanding window techniques 

where training datasets progressively incorporate 

additional historical years while maintaining temporal 

order integrity, with training periods spanning from 

initial year t through year t+k, followed by validation 

assessment on year t+k+1, and final testing evaluation 

on year t+k+2. The walk-forward analysis ensures that 

model performance assessment reflects realistic 

forecasting conditions where future predictions must 

be based exclusively on historical information without 

access to subsequent realizations, thereby preventing 

data leakage artifacts that artificially inflate 

performance metrics and compromise confidence in 

model reliability assessments [16].  

This temporal validation strategy systematically 

addresses the sequential structure of electricity 

demand data by preserving autocorrelation patterns, 

seasonal dependencies, and economic momentum 

effects that create systematic relationships between 

successive observations, ensuring that validation 

results accurately reflect the model's capability to 

generate credible out-of-sample forecasts under 

genuine operational conditions. The expanding 

window approach further enables assessment of model 

stability and adaptation capabilities as new 

information becomes available, providing insights into 

forecasting reliability across different temporal 

horizons and economic conditions while maintaining 

the temporal integrity essential for robust performance 

evaluation in long-term strategic planning applications 

[10]. 

Performance Metrics: 

1. MAPE: Mean Absolute Percentage Error for 

relative accuracy. 

2. RMSE: Root Mean Square Error for absolute 

accuracy 

3. R²: Coefficient of determination for explanatory 

power. 

The performance evaluation framework employs 

three complementary metrics that capture distinct 

dimensions of forecasting accuracy and reliability, 

providing comprehensive assessment capabilities 

essential for operational deployment and strategic 

planning applications [31]. Mean Absolute Percentage 

Error (MAPE) serves as the primary relative accuracy 

metric, quantifying prediction errors as percentages of 

actual demand values to facilitate comparison across 

different forecast horizons and demand magnitudes 

while providing intuitive interpretation for policy and 

planning applications where relative accuracy 

assessment enables direct comparison with 

institutional forecasting benchmarks and alternative 

methodological approaches [31].  

Root Mean Square Error (RMSE) provides 

absolute accuracy measurement that emphasizes larger 

prediction errors through quadratic weighting, proving 

particularly relevant for capacity planning applications 

where extreme forecasting errors carry 

disproportionate operational and financial 

consequences that could compromise system 

reliability or investment efficiency [26]. The RMSE 

metric enables direct assessment of prediction 

accuracy in physical units (terawatt-hours) essential 

for engineering applications and infrastructure sizing 

decisions while providing sensitivity to outlier 

performance that might not be adequately captured 

through other accuracy measures.  

Coefficient of determination (R²) quantifies the 

model's explanatory power by measuring the 
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proportion of demand variance captured by the 

forecasting framework, providing insights into the 

model's understanding of underlying demand 

evolution patterns and trend-following capabilities 

essential for long-term strategic applications [22]. The 

R² metric enables assessment of model performance in 

capturing systematic demand patterns while 

distinguishing between predictable trend components 

and random fluctuations, thereby providing 

confidence measures for strategic planning 

applications that require reliable trend identification 

and extrapolation under diverse economic scenarios 

[26]. 

 
C.  Grey Wolf Optimizer Implementation 

The GWO algorithm optimizes three critical 

hyperparameters: 

1. Hidden neurons (10-100): Network complexity 

optimization 

2. Learning rate (0.001-0.1): Training convergence 

control 

3. Regularization parameter (0.0001-0.01): 

Overfitting prevention 

Fitness Function: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = α × Training_Error + (1-α) × 

Validation_Error + λ × Regularization_Term 
(3) 

where α = 0.7 balances training vs. validation 

performance. 

The Grey Wolf Optimizer algorithm provides 

systematic hyperparameter optimization that 

addresses the architecture selection challenges 

consistently encountered in neural network 

applications for energy forecasting, targeting three 

critical parameters that fundamentally determine 

model performance and generalization capability [20, 

23].  

The optimization framework systematically 

explores hidden neuron configurations ranging from 

10-100 neurons to identify optimal network 

complexity that balances learning capacity with 

overfitting prevention, learning rate specifications 

spanning 0.001-0.1 that govern training convergence 

speed and stability, and regularization parameter 

values between 0.0001-0.01 that control model 

complexity and prevent excessive fitting to training 

data [15]. The multi-objective fitness function 

employs the weighted formulation as shown at 

equation 3, provides optimal balance between training 

accuracy and validation performance based on 

empirical validation across multiple forecasting 

contexts, ensuring that optimization identifies 

parameter configurations that perform effectively on 

unseen data rather than simply minimizing training 

error [21, 22]. This systematic optimization approach 

addresses the fundamental challenge of balancing 

model complexity with generalization capability while 

providing computational efficiency suitable for 

operational forecasting applications where regular 

model updating and parameter adaptation may be 

required as new data becomes available [32]. 

The Grey Wolf Optimizer algorithm 

implementation employs a carefully calibrated 

configuration designed to balance exploration 

thoroughness with computational efficiency while 

ensuring robust convergence to optimal 

hyperparameter configurations [33]. The population 

size specification of twenty search agents provides 

sufficient diversity for comprehensive parameter 

space exploration without excessive computational 

overhead, enabling effective sampling of the three-

dimensional optimization space encompassing hidden 

neuron counts, learning rates, and regularization 

parameters while maintaining reasonable 

computational requirements suitable for operational 

deployment [34]. The algorithm operates through a 

maximum of fifty iterations with position updates 

governed by the mathematical formulation that 

linearly decreases from 2 to 0 over the optimization 

horizon [20]. 

𝑋⃗ (𝑡 + 1) =
𝑋⃗1 + 𝑋⃗2 + 𝑋⃗3

3
 (4) 

 

𝑋⃗1 = 𝑋⃗𝛼(𝑡) − 𝐴1 ∙ 𝐷⃗⃗⃗𝛼 

𝑋⃗2 = 𝑋⃗𝛽(𝑡) − 𝐴1 ∙ 𝐷⃗⃗⃗𝛽 

𝑋⃗3 = 𝑋⃗𝛿(𝑡) − 𝐴1 ∙ 𝐷⃗⃗⃗𝛿 

(5) 

 

The convergence criterion employs fitness 

improvement monitoring with termination triggered 

when improvement falls below 0.001% for five 

consecutive iterations, ensuring that optimization 

ceases when further search is unlikely to yield 

meaningful performance gains while preventing 

premature termination that might compromise solution 

quality [34]. This configuration provides systematic 

balance between optimization thoroughness and 

computational efficiency, enabling practical 

deployment for operational forecasting applications 

while maintaining sufficient search capability to 

identify globally optimal hyperparameter 

configurations across diverse problem instances and 

data conditions [33, 34]. 

D. Multi-Scenario Modeling Framework 

 

Table 3 shows the multi-scenario modeling 

framework encompasses three distinct development 

trajectories that systematically capture the range of 

plausible economic, demographic, and policy 

conditions Indonesia may experience over the 2026-

2034 forecasting horizon, with parameter 

specifications grounded in historical volatility 

analysis, institutional planning documents, and 

empirical evidence from comparable emerging 

economies [35, 36]. The Conservative scenario 

represents lower-bound development assumptions 

characterized by cautious economic expansion with 

GDP growth of 4.8%, restrained population growth of 

1.0%, measured industrial development at 4.2%, 

moderate electrification progression of 2.0% annually, 

and aggressive energy efficiency improvements of 



Grey Wolf Optimizer-Neural Network Model for Indonesia Electricity Demand Prediction: Multi-Scenario Analysis and 

Performance Evaluation 2026-2034 

164 

1.5% that collectively reflect risk-averse planning 

conditions under economic uncertainty, policy 

constraints, or external disruption scenarios [22].  

This conservative parameterization aligns with 

historical downside volatility patterns approximately 

one standard deviation below long-term economic 

trends, providing robust baseline projections suitable 

for prudent infrastructure planning and financial 

forecasting applications where supply adequacy must 

be maintained under challenging development 

conditions [24]. The Moderate scenario establishes 

baseline development expectations through balanced 

economic growth of 5.5% GDP expansion, steady 

population growth of 1.2%, robust industrial 

development of 5.0%, progressive electrification 

advancement of 2.5% annually, and standard energy 

efficiency improvements of 1.2% that collectively 

represent continuation of current development 

momentum under normal economic and policy 

conditions [23]. 
 

Table 3. Scenario Parameter Specifications 

Parameter Conservative Moderate Optimistic Justification 

GDP Growth (%) 4.8 5.5 6.2 
Historical volatility ±1σ around 
long-term trend 

Population Growth (%) 1 1.2 1.4 Demographic transition scenarios 

Industrial Growth (%) 4.2 5 5.8 
Manufacturing sector expansion 

rates 

Electrification Rate (%) 2 2.5 3 Rural electrification program targets 

Energy Efficiency 

Improvement (%) 
1.5 1.2 1 Technology adoption rates 

The Optimistic scenario encompasses upper-bound 

development possibilities characterized by robust 

economic expansion of 6.2% GDP growth, accelerated 

population growth of 1.4%, rapid industrial 

development of 5.8%, aggressive electrification 

deployment of 3.0% annually, and modest energy 

efficiency improvements of 1.0% that reflect favorable 

economic conditions, supportive policy environments, 

and successful implementation of development 

programs [35]. The parameter justification 

methodology employs rigorous statistical analysis of 

historical volatility patterns, with GDP growth 

specifications based on ±1σ deviations around 

Indonesia's long-term economic trends, ensuring that 

scenario boundaries capture realistic development 

possibilities while maintaining statistical credibility 

[24, 27].  

Demographic transition scenarios reflect 

established population projection methodologies that 

account for fertility rate evolution, mortality 

improvements, and migration patterns characteristic of 

Indonesia's demographic development stage, while 

industrial growth parameters align with manufacturing 

sector expansion rates observed in comparable 

Southeast Asian economies during similar 

development phases [37]. Electrification rate 

specifications correspond to rural electrification 

program targets established in Indonesia's national 

development plans, reflecting infrastructure 

development capabilities and policy commitment 

levels under different resource availability conditions 

[37, 39]. Energy efficiency improvement parameters 

reflect technology adoption rate variations across 

different economic scenarios, where rapid economic 

growth may reduce efficiency improvement emphasis 

while slower growth enables greater focus on 

efficiency enhancement through technology 

deployment and behavioral change programs [23, 26]. 

The fundamental electricity demand model 

establishes the mathematical relationship between 

electricity consumption and various influencing 

factors in Indonesia. The basic demand equation is 

formulated as: 

𝐷𝑡 = 𝛼0 + 𝛼1𝐺𝐷𝑃𝑡 + 𝛼2𝑃𝑂𝑃𝑡
+ 𝛼3𝑇𝐸𝑀𝑃𝑡 + 𝛼4𝐼𝑁𝐷𝑡
+ 𝛼5𝑈𝑅𝐵𝑡 + 𝛼6𝐸𝐹𝐹𝑡
+ 𝛼7𝐸𝐿𝐸𝐶𝑇𝑡 + 𝜀𝑡 

(6) 

 

The model incorporates both linear and non-linear 

relationships to capture the complex dependencies 

between socioeconomic factors and electricity 

consumption patterns. Economic elasticity factors are 

integrated to represent the responsiveness of 

electricity demand to economic growth, while 

demographic multipliers account for population-

driven demand changes [7]. 

The scenario generation methodology employs 

sophisticated stochastic modeling techniques that 

systematically incorporate uncertainty across multiple 

dimensions while maintaining analytical tractability 

for strategic planning applications [38, 39]. Each 

scenario integrates stochastic components through 

Monte Carlo simulation frameworks that recognize 

parameter estimation uncertainty, policy 

implementation variability, and external shock 

possibilities that cannot be systematically predicted 

but significantly influence long-term demand 

evolution patterns. The fundamental mathematical 

formulation follows the multiplicative structure [34]: 

𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑡) = 𝐷𝑏𝑎𝑠𝑒(𝑡) ∙ ∏ 𝐹𝑘(𝑡)

𝐾

𝑘=1

∙ (1 + 𝜖𝑡) 

(7) 

This multiplicative formulation ensures that 

uncertainty effects compound realistically across 

different influence categories while maintaining 
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positive demand values and preserving the relative 

importance of different driver variables in scenario-

specific contexts. 

The Monte Carlo implementation generates 

multiple demand trajectory realizations for each 

scenario through systematic sampling of the stochastic 

error term, enabling comprehensive uncertainty 

quantification and probabilistic forecasting that 

supports risk-based decision making under diverse 

planning conditions [38]. The expanded mathematical 

representation incorporates component-wise growth 

factor decomposition following equation 8 [34] 

𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐(𝑡) = 𝐷𝑏𝑎𝑠𝑒(𝑡) ∙ 𝐹1(𝑡) ∙ 𝐹2(𝑡)

∙ 𝐹3(𝑡) ∙∙∙  𝐹𝑘(𝑡) ∙ (1 + 𝜖𝑡) 
(8) 

The Monte Carlo formulation enables generation 

of multiple trajectory realizations expressed 

𝐷𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
(𝑗) (𝑡) = 𝐷𝑏𝑎𝑠𝑒(𝑡) ∙ ∏ 𝐹𝑘

(𝑗)(𝑡) 
𝐾

𝑘=1

∙ (1 + 𝜖𝑡
(𝑗)

) 

(9) 

for simulation iteration j, providing comprehensive 

probabilistic information that quantifies prediction 

confidence intervals and supports adaptive planning 

frameworks capable of responding to emerging 

evidence about Indonesia's development trajectory 

[25]. This stochastic approach ensures that scenario 

projections acknowledge both parameter uncertainty 

and fundamental unpredictability while maintaining 

sufficient precision for strategic infrastructure 

planning and policy formulation applications that 

require quantitative planning boundaries under 

uncertainty conditions [40]. 

 

III. RESULTS AND DISCUSSION 
A.  Model Optimization and Performance 

The GWO algorithm demonstrated exceptional 

convergence characteristics and systematic 

performance efficiency in identifying optimal neural 

network configurations across multiple optimization 

trials, achieving stable convergence after thirty-two 

iterations with substantial improvement in objective 

function performance compared to initial random 

parameter configurations. The optimization process 

exhibited characteristic exploration-exploitation 

balance with rapid initial improvement during the first 

ten iterations followed by refined local search around 

promising parameter regions, ultimately terminating 

well below the fifty-iteration maximum threshold due 

to satisfaction of convergence criteria rather than 

computational limits. This efficient convergence 

behavior indicates effective algorithm implementation 

and appropriate parameter space exploration strategies 

that avoid both premature convergence to suboptimal 

solutions and excessive computational overhead 

associated with unnecessary iteration continuation. 

 Systematic convergence pattern validates the 

GWO algorithm's ability to navigate the complex 

three-dimensional hyperparameter space of hidden 

neuron counts, learning rates, and regularization 

parameters while maintaining computational 

efficiency for operational forecasting applications that 

require model retraining and parameter updating as 

new data becomes available. 

The optimal hyperparameter configuration found 

by systematic Grey Wolf Optimizer search has forty-

five hidden neurons, balancing model complexity and 

generalization capability to avoid underfitting due to 

network capacity and overfitting due to architectural 

complexity in limited data contexts. The optimal 

learning rate was 0.0156, which provided stable 

gradient descent convergence and sufficient 

adaptation speed for effective pattern learning without 

oscillatory behavior or convergence failure typical of 

excessively aggressive neural network training 

learning rates. The optimal regularization parameter 

was 0.0023, which prevented overfitting through 

weight decay mechanisms and avoided model learning 

capability constraints that could compromise complex 

pattern recognition performance. Hidden neuron 

specification determines model capacity, learning rate 

controls training dynamics, and regularization 

manages the fundamental bias-variance trade-off 

needed for robust generalization across diverse 

forecasting scenarios and economic conditions. 

The convergence analysis reveals systematic 

fitness improvement from initial objective function 

values of 0.045 to final optimized values of 0.012, 

representing a remarkable 73.3% improvement in 

optimization performance through intelligent 

hyperparameter selection that translates directly into 

enhanced forecasting accuracy and improved 

generalization capability on validation datasets. Figure 

1 illustrates the convergence trajectory characterized 

by rapid initial descent during the exploration phase 

(iterations 1-15) where fitness improvement averaged 

0.0025 per iteration, followed by gradual refinement 

during the exploitation phase (iterations 16-32) with 

average improvement rates of 0.0008 per iteration, 

demonstrating the algorithm's ability to transition 

effectively between global exploration and local 

exploitation strategies.  

 

 

Figure 1. Grey Wolf Optimizer convergence curve showing 
fitness improvement over iterations                                                  

The convergence curve shows smooth monotonic 

improvement without oscillation or premature 

stagnation, confirming robust algorithm 

implementation and optimization problem-specific 

parameter settings. The final convergence after thirty-
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two iterations, significantly fewer than the maximum 

fifty iterations, shows computational efficiency that 

makes the optimization approach practical for 

operational forecasting applications and provides 

confidence that the identified configuration is a 

genuine optimum. This optimization performance lays 

the groundwork for superior forecasting accuracy in 

subsequent validation analyses and proves 

metaheuristic optimization approaches for neural 

network hyperparameter selection in energy 

forecasting applications are feasible. 

Benchmark Comparison Results 

 

Table 4's comprehensive benchmarking analysis 

shows that traditional and contemporary forecasting 

methodologies have fundamental limitations that 

make them unsuitable for long-term strategic planning 

in emerging economies. Traditional ARIMA modeling 

yields 34.7 percent MAPE, 28.3 TWh RMSE, and 

0.651 R², highlighting the limitations of linear time 

series methodologies in complex socio-economic 

systems with non-linear relationships, structural 

breaks, and regime changes of rapidly developing 

economies. While the ARIMA methodology improves 

computational efficiency with only two minutes of 

training, its wide confidence intervals (±45.2 TWh) 

limit its usefulness for precision-dependent capacity 

planning applications, where demand uncertainty 

affects infrastructure investment decisions and system 

reliability assessments. ARIMA models' linear 

stationarity assumption fails to capture emerging 

markets' dynamic elasticity relationships between 

economic growth and electricity demand, where GDP-

electricity coupling effects exhibit non-linear 

threshold behaviors and structural evolution patterns 

that violate traditional econometric modeling 

assumptions. 

Deep-temporary learning approaches improve 

pattern recognition but have economic integration and 

computational efficiency issues that limit their use in 

operational forecasting systems. Convolutional Neural 

Network-Long Short-Term Memory (CNN-LSTM) 

architectures outperform traditional methods with 

26.8% MAPE, 21.7 TWh RMSE, and 0.743 R², 

demonstrating advanced temporal pattern recognition 

and sequential dependency modeling. 

Although CNN-LSTM approaches require 

significant computational resources and training times 

of 47 minutes, they produce moderate confidence 

intervals (±38.1 TWh) and limited ability to 

incorporate macroeconomic variables for long-term 

forecasting in developing economies where economic 

drivers drive demand evolution patterns. LSTM-

Attention models improve performance with 22.4 

percent MAPE, 19.2 TWh RMSE, and 0.782 R². These 

models focus on relevant temporal dependencies but 

require 63 minutes of training time and maintain wide 

confidence intervals (±33.7 TWh) for strategic 

planning. For policy applications where causal 

understanding of demand drivers enables targeted 

interventions and regulatory adjustments, these deep 

learning approaches' black-box nature compromises 

interpretability, while their data-intensive 

requirements present challenges in emerging market 

contexts with limited historical information and data 

quality constraints. 

The Grey Wolf Optimizer-Neural Network 

framework outperforms multiple evaluation 

dimensions and provides scenario-specific capabilities 

for robust planning under uncertainty conditions 

typical of emerging economic development 

trajectories. The Conservative scenario outperforms 

all benchmark methodologies with a MAPE of 3.9%, 

RMSE of 8.1 TWh, and R² of 0.947, while maintaining 

efficient computational time of 15 minutes and precise 

confidence intervals (±12.3 TWh) for operational 

planning applications. The synergistic integration of 

intelligent hyperparameter optimization through Grey 

Wolf Optimizer algorithm, explicit economic variable 

incorporation, and scenario-specific parameter 

calibration addresses fundamental limitations of 

existing approaches to achieve this exceptional 

performance.
 

Table 4. Model Performance Comparison 

Method 
MAPE 

(%) 

RMSE 

(TWh) 
R² 

Training 

Time (min) 

95% CI Width 

(TWh) 

ARIMA 34.7 28.3 0.651 2 ±45.2 

CNN-LSTM 26.8 21.7 0.743 47 ±38.1 

LSTM-Attention 22.4 19.2 0.782 63 ±33.7 

GWO-NN (Conservative) 3.9 8.1 0.947 15 ±12.3 

GWO-NN (Moderate) 19 15.6 0.821 15 ±28.9 

GWO-NN (Optimistic) 43.7 31.2 0.687 15 ±52.4 

The Moderate scenario demonstrates balanced 

performance with MAPE of 19.0%, RMSE of 15.6 

TWh, and R² of 0.821, maintaining competitive 

accuracy relative to advanced deep learning methods 

while providing scenario-based planning capabilities 

absent in conventional approaches. The Optimistic 

scenario, while exhibiting higher prediction errors 

with MAPE of 43.7% and RMSE of 31.2 TWh, serves 
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critical boundary condition assessment functions that 

enable capacity stress-testing and identification of 

potential supply-demand imbalances under rapid 

development scenarios, providing strategic value that 

transcends conventional accuracy metrics. Statistical 

significance testing employing paired t-tests confirms 

that GWO-NN Conservative-scenario performance 

improvements over all benchmark methods achieve 

statistical significance (p < 0.001) with Cohen's d 

effect sizes exceeding 1.2, indicating not only 

statistical significance but large practical significance 

for operational forecasting applications [40]. The 

consistent 15-minute training time across all GWO-

NN scenarios demonstrates computational efficiency 

advantages over deep learning approaches while the 

scenario-specific confidence interval variations (±12.3 

to ±52.4 TWh) provide transparent uncertainty 

quantification that enables risk-based decision making 

essential for infrastructure investment and policy 

formulation under diverse development conditions. 
 
B.  Multi-Scenario Forecasting Result and Analysis 

The comprehensive long-term demand projections 

presented in Table 5 reveal sophisticated temporal 

evolution patterns that systematically diverge across 

scenario trajectories while providing critical insights 

into the range of plausible electricity demand 

outcomes under different development conditions 

throughout the 2026-2034 forecasting horizon. The 

Conservative scenario demonstrates systematic 

demand growth from 230.1 TWh in 2026 to 377.0 

TWh in 2034, representing cumulative expansion of 

63.8% over the nine-year period with average annual 

growth rates of approximately 5.6% that reflect 

restrained economic development assumptions 

combined with aggressive energy efficiency 

improvements and measured electrification 

progression.  

This growth trajectory exhibits characteristic 

demand stabilization features with initially steep 

expansion during 2026-2028 followed by gradual 

deceleration toward sustainable long-term growth 

rates, reflecting the combined effects of economic 

maturation, efficiency technology penetration, and 

diminishing returns to electrification expansion as 

coverage approaches universal access levels across 

Indonesia's diverse archipelagic geography. The 

Moderate scenario projects more aggressive demand 

expansion from 280.3 TWh in 2026 to 458.4 TWh in 

2034, representing cumulative growth of 63.6% with 

average annual growth rates of approximately 7.2% 

that incorporate balanced economic development 

assumptions, steady demographic transitions, and 

progressive electrification deployment under normal 

policy and economic conditions. 

The comparative analysis with PLN official 

projections reveals nuanced alignment patterns that 

provide critical validation of forecasting methodology 

while illuminating institutional planning assumptions 

and strategic planning implications for Indonesia's 

energy infrastructure development. The Conservative 

scenario maintains exceptional concordance with PLN 

projections throughout the forecasting horizon, 

exhibiting remarkable alignment with deviations 

ranging from -5.9% in 2026 to -7.4% in 2034, 

culminating in near-perfect convergence during the 

critical 2030 intermediate period where both 

projections intersect within 0.6% margin (-0.6% 

deviation from PLN's 313.6 TWh projection).  

This exceptional alignment suggests that PLN's 

institutional planning methodologies incorporate 

similar risk-averse assumptions regarding economic 

growth trajectories, demographic transitions, and 

energy efficiency improvements, providing mutual 

validation of both forecasting approaches and 

supporting the Conservative scenario's utility for 

baseline capacity planning and financial forecasting 

applications. The temporal consistency of this 

alignment, maintaining stability across multiple 

forecasting horizons, demonstrates robust 

methodological compatibility and suggests that 

Conservative scenario assumptions closely mirror the 

parameter selections and methodological frameworks 

employed in PLN's institutional forecasting processes. 

 
Table 5. Electricity Demand Projections 2026-2034 (TWh) 

Year 
Conser

vative 

Mod

erate 

Opti
misti

c 

PLN 
Offic

ial 

Deviation 
from PLN 

(%) 

2026 230.1 280.3 333.4 244.6 
-

5.9/+14.6/+

36.3 

2030 311.7 390.6 478.2 313.6 

-

0.6/+24.6/+

52.2 

2034 377 458.4 546.1 407.3 

-

7.4/+12.5/+

34.1 

 

The scenario-specific deviation analysis from PLN 

projections illuminates strategic planning implications 

and reveals the expanding uncertainty envelope 

characteristic of long-term forecasting applications in 

emerging economy contexts. The Moderate scenario 

demonstrates systematic overestimation relative to 

PLN projections with deviations escalating from 

+14.6% in 2026 to +12.5% in 2034, representing 

approximately 51 TWh higher demand by the terminal 

forecast year that reflects more aggressive 

assumptions regarding GDP expansion rates (5.5% vs 

Conservative 4.8%), electrification acceleration (2.5% 

vs 2.0%), and demographic development patterns. 

 This systematic bias indicates that PLN's planning 

framework incorporates more conservative growth 

assumptions than the Moderate scenario's balanced 

development pathway, suggesting potential capacity 

adequacy challenges should Indonesia experience 

accelerated economic development or more rapid 

electrification penetration than currently anticipated in 

official planning documents. The Optimistic scenario 

exhibits substantial deviations ranging from +36.3% 
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in 2026 to +34.1% in 2034, representing 138.8 TWh 

higher demand than PLN projections by 2034, 

reflecting aggressive economic expansion 

assumptions (6.2% GDP growth) and rapid 

electrification deployment (3.0% annually) that serve 

critical boundary condition assessment functions for 

capacity stress-testing and system resilience 

evaluation. The progressive widening of scenario 

bandwidth from 103.3 TWh in 2026 to 169.1 TWh in 

2034 quantitatively demonstrates uncertainty 

amplification inherent in long-term forecasting, where 

minor variations in underlying assumptions compound 

exponentially over extended time horizons, 

necessitating adaptive planning frameworks capable 

of accommodating multiple development pathways 

while maintaining system reliability and supply 

adequacy under diverse growth scenarios. 

The key findings synthesis reveals that the 

Conservative scenario's exceptional alignment with 

PLN projections (3.9% average absolute difference) 

establishes it as the most reliable predictor for 

operational planning applications, validating current 

institutional planning assumptions while providing 

confidence for baseline capacity allocation, 

investment sequencing, and regulatory decision-

making processes. The Moderate scenario's position as 

an accelerated development pathway (+12.5% above 

PLN by 2034) provides strategic reference for 

enhanced renewable energy deployment schedules and 

grid modernization investments that can accommodate 

higher demand growth while maintaining 

environmental performance targets and system 

stability requirements.  

The Optimistic scenario's function as a boundary 

condition for capacity stress-testing (+34.1% above 

PLN) enables identification of potential supply-

demand imbalances and system vulnerabilities under 

exceptional development circumstances, supporting 

investment in flexible capacity resources, demand 

response capabilities, and adaptive infrastructure 

strategies that can address unexpected demand 

acceleration while preserving system resilience. This 

tri-scenario framework collectively provides 

comprehensive planning envelopes that acknowledge 

uncertainty while maintaining decision-making 

capability, enabling evidence-based policy 

formulation and strategic infrastructure development 

that can accommodate diverse development 

trajectories while ensuring energy security and 

supporting Indonesia's sustainable development 

objectives and carbon neutrality commitments by 

2034. 

The comprehensive sensitivity analysis employing 

Sobol indices methodology reveals the hierarchical 

importance of different driver variables in electricity 

demand evolution while providing crucial insights into 

the causal mechanisms underlying forecasting model 

behavior and strategic policy intervention priorities. 

Gross Domestic Product growth emerges as the 

overwhelming dominant influence, accounting for 

67.3% of total demand variance across all scenarios, 

confirming the fundamental importance of economic 

development trajectories in electricity consumption 

patterns for rapidly developing economies where 

industrial expansion, commercial sector growth, and 

household income improvements collectively drive 

substantial increases in electricity utilization.  

This GDP dominance reflects the exceptionally 

high electricity demand characteristic of emerging 

markets during industrialization phases, where 

manufacturing sector development, infrastructure 

modernization, and urbanization processes create 

compounding effects that amplify the relationship 

between economic growth and electricity consumption 

beyond the unity elasticity relationships typical in 

mature economies. Population growth dynamics 

constitute the second most influential driver category, 

contributing 18.4% of total demand variance and 

representing demographic dividend effects that 

encompass both direct consumption increases through 

household formation and indirect effects through 

urban infrastructure development, service sector 

expansion, and residential electrification programs 

that accompany demographic transitions. The 

substantial combined influence of GDP and 

population growth (85.7% of total variance) 

underscores the critical importance of macroeconomic 

and demographic forecasting accuracy in electricity 

demand projection applications, while simultaneously 

highlighting the policy leverage available through 

economic development strategies and demographic 

planning initiatives that can systematically influence 

long-term demand evolution patterns. 

Industrial activity indices contribute 8.9% of 

demand variance, capturing manufacturing sector 

expansion effects and industrial policy impacts that 

drive electricity-intensive economic development 

patterns characteristic of emerging economies 

transitioning from agricultural to industrial economic 

structures. This industrial contribution reflects sector-

specific electricity intensity relationships where 

manufacturing expansion, particularly in energy-

intensive industries such as steel production, 

aluminum smelting, and chemical processing, creates 

disproportionate electricity demand increases relative 

to their economic output contributions, emphasizing 

the importance of industrial policy coordination with 

electricity infrastructure planning to ensure adequate 

supply capacity for strategic economic development 

initiatives.  

Electrification rate progression accounts for 4.1% 

of demand variance, representing the continued 

significance of access expansion in Indonesia's rural 

and remote areas where systematic electrification 

programs generate new demand while simultaneously 

improving economic development opportunities and 

social welfare outcomes [37, 39]. The remaining 

factors including temperature variations, energy 

efficiency improvements, and other environmental 

variables collectively contribute 1.3% of demand 
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variance, representing important but secondary 

influences that may become more significant under 

specific climatic conditions or efficiency policy 

implementations but do not fundamentally alter 

aggregate demand trajectories. 

This sensitivity hierarchy provides strategic 

guidance for policy interventions and monitoring 

frameworks, suggesting that economic growth 

management and demographic planning initiatives 

offer the greatest leverage for demand management, 

while industrial policy coordination and electrification 

program design provide secondary but important 

intervention opportunities for managing electricity 

demand evolution in alignment with infrastructure 

development capabilities and environmental 

sustainability objectives. 

 
C. Validation Against PLN Projections 

The comprehensive alignment analysis reveals 

exceptional concordance between the Conservative 

scenario projections and PLN institutional forecasts, 

establishing remarkable validation of both 

methodological approaches and strategic planning 

compatibility that fundamentally supports the 

scenario's utility for operational forecasting 

applications. The Conservative scenario demonstrates 

exceptional performance characteristics with average 

absolute difference of only 3.9% from PLN 

projections, maximum deviation constrained to 7.8% 

occurring in 2031, and temporal consistency 

quantified through coefficient of determination (R² = 

0.947) that indicates near-perfect trend following 

capability throughout the forecasting horizon, 

collectively earning EXCELLENT alignment 

classification suitable for baseline capacity planning 

and operational decision-making processes. 

 This exceptional alignment suggests that 

Conservative scenario assumptions regarding 

economic growth trajectories (4.8% GDP growth), 

demographic transitions (1.0% population growth), 

and energy efficiency improvements (1.5% annually) 

closely mirror the methodological frameworks and 

parameter selections employed in PLN's institutional 

forecasting processes, providing mutual validation 

that enhances confidence in both analytical 

approaches. The policy implications of this alignment 

validation are profound, establishing the Conservative 

scenario as suitable for risk management applications 

where baseline capacity planning requires reliable 

demand projections to ensure supply adequacy under 

challenging development conditions, while 

simultaneously confirming alignment with existing 

infrastructure development schedules that enables 

coordinated investment timing and resource allocation 

strategies. 

 Furthermore, the exceptional alignment supports 

current tariff and subsidy projection frameworks by 

validating the demand evolution assumptions 

underlying PLN's financial planning models, thereby 

providing institutional confidence for regulatory 

decision-making processes and long-term financial 

sustainability assessments essential for Indonesia's 

energy sector development and renewable energy 

transition initiatives. This validation performance 

establishes the Conservative scenario as the primary 

reference trajectory for operational planning 

applications while confirming the methodological 

credibility necessary for evidence-based policy 

formulation and strategic infrastructure investment 

decisions that must balance energy security 

requirements with economic development objectives 

and environmental sustainability commitments. 

The temporal evolution of inter-scenario variance 

illustrated in Figure 2 reveals critical insights into 

forecasting uncertainty amplification and strategic 

planning requirements over extended forecasting 

horizons, demonstrating characteristic fan-shaped 

dispersion patterns that commence from relatively 

proximate baseline positions and progressively 

diverge with increasing temporal distance. The initial 

convergent growth phase during 2026-2029 exhibits a 

bandwidth scenario ranging from 103 TWh to 134 

TWh, reflecting relatively consistent short-term 

development expectations across different economic 

assumptions where near-term infrastructure 

commitments, policy continuity, and economic 

momentum create stabilizing influences that constrain 

divergence despite underlying parameter differences.  

 
Figure 2. Yearly electricity demand predictions (2026-
2034) for three scenarios compared to PLN projections 

 

This convergence period transitions into 

accelerating divergence during 2030-2034, where 

scenario bandwidth expands dramatically to 169 TWh 

by the terminal forecast year, quantitatively 

demonstrating uncertainty amplification inherent in 

long-term forecasting applications where minor 

variations in underlying growth assumptions 

compound exponentially over extended time horizons 

to create substantial differences in terminal outcomes.  

The identification of critical decision points during 

the 2028-2030 period represents strategically 

important temporal thresholds where scenario 

trajectories begin systematic separation based on 

underlying economic and policy assumptions, 

enabling adaptive planning frameworks that can 

monitor actual demand evolution relative to scenario 

boundaries and implement responsive capacity 

allocation strategies based on emerging evidence 

about Indonesia's development trajectory. This 
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divergence analysis provides quantitative foundation 

for risk-based planning approaches that acknowledge 

uncertainty while maintaining decision-making 

capability, suggesting that infrastructure investment 

strategies should incorporate flexible capacity 

deployment mechanisms and adaptive resource 

allocation protocols that can accommodate demand 

evolution across the scenario envelope while ensuring 

system reliability and supply adequacy under diverse 

development conditions, thereby supporting robust 

energy security planning that remains effective across 

multiple plausible development pathways. 

 
D. Methodological Constraints Critical Model  

The methodological framework acknowledges 

several fundamental constraints that affect model 

interpretation and application scope while identifying 

critical areas requiring continued research attention 

and methodological refinement. Data limitations 

encompass the restricted fifteen-year historical dataset 

window (2010-2025) which, while substantial relative 

to many emerging market contexts, may inadequately 

capture long-term structural changes, economic 

regime transitions, and technology disruption effects 

that could fundamentally alter electricity demand 

evolution patterns over extended forecasting horizons, 

particularly given that infrastructure asset lifespans 

typically extend 20-40 years beyond current planning 

periods.  

Economic volatility effects present significant 

challenges where major disruption events including 

the 2008 global financial crisis and 2020 pandemic-

induced economic contraction may systematically 

skew elasticity parameter estimates and relationship 

coefficients in ways that compromise forecasting 

reliability under normal economic conditions, while 

policy discontinuity limitations arise from rapid policy 

regime changes and regulatory framework evolution 

that cannot be adequately captured through historical 

relationship extrapolation. Model assumption 

constraints include linear elasticity specifications 

where GDP-electricity demand relationships are 

assumed to be constant over the forecasting horizon, 

potentially failing to capture threshold effects, 

structural breaks, and non-linear response patterns 

characteristic of complex socio-economic systems 

during development transitions.  

Technology neutrality assumptions model 

efficiency improvements as gradual rather than 

disruptive, potentially underestimating the impact of 

breakthrough technologies, distributed generation 

adoption, and demand response system deployment 

that could fundamentally alter consumption patterns, 

while climate stability constraints base temperature 

effects on historical variation patterns that may not 

adequately reflect accelerating climate change impacts 

and extreme weather event frequency increases that 

could substantially influence cooling and heating 

demand components.  

These methodological constraints necessitate 

continued model refinement and validation as 

additional data becomes available, while emphasizing 

the importance of adaptive planning frameworks that 

can accommodate structural changes and assumption 

violations that may emerge as Indonesia's energy 

system continues evolving under technological 

advancement and climate change pressures. 

The comprehensive uncertainty quantification 

analysis employing Monte Carlo simulation with 

10,000 iterations reveals systematic patterns of 

prediction confidence that demonstrate progressive 

uncertainty amplification corresponding to scenario 

ambition levels, providing critical probabilistic 

information essential for risk-based infrastructure 

planning and adaptive decision-making frameworks. 

The Conservative scenario exhibits narrow uncertainty 

bounds with 95% confidence intervals constrained to 

±5.2%, reflecting the stabilizing influence of cautious 

growth assumptions and risk-averse parameter 

specifications that minimize compounding uncertainty 

effects while maintaining sufficient precision for 

operational planning applications requiring high 

confidence in demand projections. 

The Moderate scenario demonstrates expanded 

uncertainty with 95% confidence intervals of ±12.7%, 

representing the increased parameter uncertainty 

associated with balanced development assumptions 

that incorporate both economic expansion potential 

and demographic transition variability, while the 

Optimistic scenario exhibits substantial uncertainty 

amplification with 95% confidence intervals reaching 

±18.9%, reflecting the inherent unpredictability 

associated with aggressive growth assumptions and 

the exponential accumulation of parameter 

uncertainties over extended forecasting horizons . This 

systematic progression from narrow Conservative 

bounds through moderate uncertainty to wide 

Optimistic ranges quantitatively demonstrates the 

fundamental trade-off between scenario ambition and 

prediction confidence, where more aggressive 

development assumptions necessarily sacrifice 

forecasting precision for comprehensive boundary 

condition assessment and stress-testing capabilities.  

The uncertainty amplification pattern necessitates 

adaptive planning frameworks that can accommodate 

demand evolution across probabilistic envelopes 

rather than relying on deterministic point estimates, 

supporting infrastructure investment strategies that 

incorporate flexible capacity deployment 

mechanisms, staged development protocols, and 

responsive resource allocation systems capable of 

maintaining supply adequacy and system reliability 

under diverse realization outcomes while optimizing 

capital efficiency and environmental performance. 

These probabilistic insights enable evidence-based 

risk management approaches that explicitly 

acknowledge forecasting uncertainty while providing 

quantitative foundations for contingency planning, 

capacity reserve specifications, and adaptive 
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infrastructure development strategies essential for 

robust energy security planning in emerging economic 

contexts characterized by economic volatility and 

structural transformation pressures. 

IV. CONCLUSION 

This study makes significant methodological and 

empirical contributions to electricity demand 

forecasting literature and benefits Indonesia's energy 

transition planning and infrastructure development 

strategies in emerging economies. Three key 

methodological advances address critical forecasting 

limitations. The hybrid optimization framework 

integrates Grey Wolf Optimizer algorithm capabilities 

with neural network learning to solve hyperparameter 

optimization challenges in energy forecasting 

applications through intelligent architecture selection, 

learning rate optimization, and regularisation 

parameter tuning that balance predictive accuracy and 

generalisation. The comprehensive multi-scenario 

modelling framework addresses critical gaps in 

forecasting methodologies by providing Conservative, 

Moderate, and Optimistic demand trajectories for 

robust planning under emerging market uncertainty, 

unlike deterministic approaches that generate single 

point estimates unsuitable for strategic infrastructure 

planning. By maintaining the sequential structure of 

time series data and providing realistic performance 

assessment under real operational conditions, the 

rigorous temporal validation methodology using walk-

forward analysis with expanding windows ensures 

forecasting reliability for long-term planning 

applications. 

The empirical contributions show significant 

performance superiority that sets new forecasting 

accuracy benchmarks and provides comprehensive 

energy security and sustainable development planning 

frameworks. The Conservative scenario outperforms 

traditional ARIMA models (34.7 percent MAPE) and 

CNN-LSTM approaches (26.8 percent MAPE) in 

forecasting accuracy with 3.9 percent average error 

rates while maintaining computational efficiency for 

operational deployment. The comprehensive planning 

envelope covering 377-546 TWh demand range by 

2034 provides strategic boundaries for diverse 

development pathways and uncertainty-tolerant 

decision-making, supporting adaptive infrastructure 

development and investment sequencing. GDP growth 

dominates demand variance, accounting for 67.3 

percent of demand variance, providing strategic focus 

for policy interventions and monitoring frameworks 

and establishing causal transparency necessary for 

evidence-based policy formulation and targeted 

economic development. 

Indonesia's energy planning has multiple policy 

and investment dimensions that support sustainable 

development goals and ensure energy security and 

economic development continuity under diverse 

scenario conditions. The Conservative scenario 

provides reliable foundations for baseline capacity 

planning that supports systematic infrastructure 

development and renewable energy deployment 

consistent with current institutional planning 

frameworks, while the Optimistic scenario allows 

stress-testing to identify potential supply-demand gaps 

requiring contingency plans for PLN and energy 

planning institutions. The Moderate scenario timing 

supports accelerated renewable energy deployment 

schedules and grid modernization investments to meet 

higher demand growth while maintaining system 

reliability and environmental performance targets, 

providing strategic reference for adaptive planning 

frameworks that can adapt to Indonesia's development 

trajectory. The demand projections align with 2060 

carbon neutrality targets under Conservative scenario 

assumptions, validating current environmental policy 

trajectories while highlighting potential challenges 

under accelerated growth conditions that may require 

increased renewable energy deployment and 

efficiency improvements. Higher growth scenarios 

require earlier grid modernization investments and 

advanced infrastructure development strategies to 

accommodate rapid demand expansion while 

maintaining system stability, supporting proactive 

policy frameworks that anticipate development 

acceleration. Electrification rate impact analysis 

validates rural electrification programme targets and 

supports continued investment in access expansion 

initiatives that improve social welfare and economic 

development across Indonesia's diverse archipelagic 

geography. 

This research provides a solid methodological 

foundation for intelligent energy forecasting in 

emerging economies while acknowledging the 

difficulties of long-term prediction in environments of 

economic volatility and technological transformation 

uncertainty. Indonesia's energy security planning and 

renewable energy transition initiatives benefit 

immediately from the Grey Wolf Optimizer-Neural 

Network framework's superior performance, while 

contributing methodologically to forecasting literature 

and supporting evidence-based sustainable energy 

policy formulation. The multi-scenario approach 

supports Indonesia's commitment to carbon neutrality 

by 2060 through comprehensive energy transition 

planning that balances economic development goals 

with environmental sustainability. It allows adaptive 

planning frameworks to accommodate diverse 

development pathways while ensuring system 

resilience and reliability under uncertainty conditions 

typical of rapidly evolving socio-economic systems. 
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