Analisis perbandingan komunikasi satelit Frekuensi C-*Band* Dan KA-*Band* Di Indonesia

Tanridio Silviati Delfina Abdurrahman

Program Studi Teknik Elektro Fakultas Teknik UMI Makassar, Indonesia tanridio@yahoo.com

Salmiah

Program Studi Teknik Elektro Fakultas Teknik UMI Makassar, Indonesia mia_elektro@yahoo.co.id

Saidah Suyuti

Program Studi Teknik Elektro Fakultas Teknik UMI Makassar, Indonesia saidah@ymail.com

Abstract - This paper analyzes the comparison of data communications using GEO satellites between C-band and Ka-band frequencies in Indonesia which has a tropical rain climate. The data communication uses QPSK modulation on the path of four earth stations by paying attention to six variations of observation time. Parameters, C/ N, Eb/No and link margins, are applied to indicate the communication performance. This study shows that C-band satellite communication can be implemented for all conditions, whereas in Ka-band the success of communication transfer cannot be accessed by all observation times.

Keywords: frequency, satellite, earth station, margin, availability, modulation.

I. PENDAHULUAN

Komunikasi di era milenial menuntut pertukaran informasi *real time* dengan kecepatan akses yang tinggi termasuk di Indonesia. Indonesia adalah negara tropis dengan tingkat curah hujan tinggi yang juga merupakan negara maritim membutuhkan satelit untuk pertukaran informasi secara cepat. Satelit komersil yang bekerja dipita frekuensi C-band sudah sejak awal melayani jalur komunikasi di Indonesia. Saat ini, banyak negara-negara asing berlomba-lomba meluncurkan satelit Ka-band. Sayangnya, curah hujan yang tinggi menjadi kendala penerapan satelit Ka-band tersebut sehingga diperlukan berbagai persyaratan dalam merancang komunikasi data menggunakan satelit Ka-band [1].

Pelayanan dan performansi komunikasi satelit sangat tergantung erat dengan faktor-faktor jumlah redaman-redaman yang muncul sepanjang jalur komunikasi (lintasan stasiun bumi-satelit-stasiun bumi), besar daya pancar dan penguatan antena, serta pemilihan teknik modulasi. Oleh karena itu paper ini bertujuan untuk menganalisis perbandingan komunikasi satelit berfrekuensi band dan Ka-band di empat wilayah Indonesia dengan mengetahui nilai-nilai C/N, Eb/No, margin dan availability jalur komunikasi menggunakan modulasi [2].

Penelitian ini menempatkan satelit GEO berfrekuensi C-band dan Ka-band dengan satu stasiun bumi Hub (Jakarta) dan tiga stasiun bumi lainnya (Medan, Surabaya dan Makassar) dengan menggunakan teknik modulasi digital QPSK.

Orbit satelit terletak di 108°BT dengan pita frekuensi C dan Ka. Satelit tersebut untuk frekuensi C mempunyai EIRP 55,6 dBW dan *figure of merit* 22,7 dBK, sedangkan frekuensi yang lainnya menggunakan EIRP 73,1 dBw dan G/T 19,7 dB/K. Sementara itu, stasiun-stasiun bumi yang ada masing-masing berspesifikasi sesuai tabel di bawah ini:

Tabel 1. EIRP dan G/T stasiun bumi

	Stasiun Bumi	Frekuens	i C-band	Frekuensi Ka-band		
		EIRP(dBW)	G/T (dB/K)	EIRP(dBW)	G/T (dB/K)	
	SB HUB	87,7	31	79,3	32,7	
	SB lainnya	lainnya 82,4		59,8	16,4	

Spesifikasi teknis satelit dan stasiun bumi merujuk pada satelit INTELSAT dan proyek WINDS. Jalur komunikasi C-band dan Ka-band secara berturutturut bekerja pada frekuensi *uplink* 6 GHz dan 28 GHz serta frekuensi *downlink* 4 GHz dan 18GHz [3].

II. REDAMAN JALUR KOMUNIKASI

Redaman-redaman yang muncul pada lintasan komunikasi satelit terdiri atas *free space loss* (FSL), redaman hujan, redaman awan, redaman gas-gas atmosfir dan *scintillation* dilapisan troposfer[3].

a. Redaman Ruang Bebas (FSL)

Redaman ruang bebas merupakan redaman yang dipengaruhi oleh frekuensi kerja dan jarak antara stasiun bumi – satelit. Besar redaman FSL dinyatakan dengan menggunakan persamaan [4]

$$FSL = 92,4 + 20\log f + 20\log d$$

Frekuensi menyumbang redaman terbesar pada FSL ini. Komunikasi satelit yang menggunakan pita frekuensi Ka mengalami redaman lebih besar 13 dB dibandingkan frekuensi C-band [2].

Redaman FSL komunikasi satelit C-band dan Ka-band untuk komunikasi keempat stasiun bumi ke satelit terlihat seperti pada tabel 2.

Tabel 2. Redaman ruang bebas

Stasiun	Jalur	FSL (dB)					
Bumi	Jaiur	C-Band	Ka-Band				
Jakarta	Uplink	199,0440	212,4241				
Jakarta	Downlink	195,5222	208,5864				
Surabaya	Uplink	199,0533	212,4335				
Surabaya	Downlink	195,5315	208,5958				
Medan	Uplink	199,0608	212,4409				
Medan	Downlink	195,5390	208,6032				
Makassar	Uplink	199,0758	212,4559				
ivianassai	Downlink	195,5540	208,6182				

b. Redaman Hujan

Redaman hujan juga menjadi perhatian dalam komunikasi satelit ini karena terjadi pelemahan sinyal yang signifikan. Para peneliti terdahulu telah melakukan banyak kajian tentang redaman hujan yang memberikan beberapa metode untuk memprediksinya [5] [6]. Rekomendasi ITU-R P.618-12 dijadikan landasan perhitungan redaman hujan pada penelitian ini. Redaman-redaman hujan untuk kedua komunikasi satelit berbeda frekuensi dapat dilihat pada tabel 3 dan tabel 4 berikut ini.

Tabel 3. Redaman hujan komunikasi satelit C-band

Stasiun	T-1	Redaman Hujan Frekuensi C-Band (dB)							
Bumi	Jalur	0.01%	0.5%	0.6%	0.7%	0.8%	0.9%		
Jakarta	Uplink	0,8247	0,0898	0,0743	0,0624	0,0529	0,0452		
Jakarta	Downlink	0,1532	0,0124	0,0101	0,0084	0,0071	0,0060		
Surabaya	Uplink	0,9156	0,1003	0,0833	0,0702	0,0597	0,0511		
Surabaya	Downlink	0,1556	0,0125	0,0102	0,0085	0,0072	0,0061		
Medan	Uplink	1,0691	0,1242	0,1027	0,0861	0,0728	0,0620		
Medan	Downlink	0,1830	0,0156	0,0127	0,0105	0,0088	0,0074		
Makassar	<i>Uplink</i>	0,9277	0,1034	0,0857	0,0720	0,0610	0,0521		
Makassai	Downlink	0,1581	0,0129	0,0105	0,0088	0,0073	0,0062		

Tabel 4. Redaman hujan komunikasi satelit Ka-band

Stasiun	Jalur	Redaman Hujan Frekuensi Ka-Band (dB)							
Bumi	Jaiui	0.01%	0.5%	0.6%	0.7%	0.8%	0.9%		
Jakarta	Uplink	23,0157	4,5013	3,8313	3,2914	2,8466	2,4744		
Jakarta	Downlink	11,7990	2,0515	1,7366	1,4850	1,2792	1,1080		
Surabaya	Uplink	26,3392	5,2137	4,4510	3,8357	3,3280	2,9022		
Surabaya	Downlink	13,3387	2,3423	1,9885	1,7055	1,4737	1,2806		
Medan	Uplink	30,0741	6,2852	5,3446	4,5836	3,9550	3,4283		
Medan	Downlink	15,2157	2,8205	2,3850	2,0358	1,7494	1,5110		
Makassar	Uplink	26,7552	5,3913	4,5919	3,9465	3,4140	2,9677		
Makassai	Downlink	13,4995	2,4116	2,0425	1,7471	1,5052	1,3037		

c. Redaman Lainnya

Redaman-redaman lainnya berupa redaman yang timbul karena faktor pekatnya awan, gas-gas yang ada dilapisan atmosfer dan *scintillation* yang terdapat di troposfer. Redaman awan diperoleh dengan mengikuti rekomendasi ITU-R P. 860-6. Sementara itu, besaran redaman atmosfer sebagian besar timbul karena redaman gas oksigen dan uap air yang diperoleh dengan mengikuti rekomendasi-rekomendasi ITU-R P. 835-5 dan ITU-R P. 676-7. Gabungan rekomendasi-rekomendasi ITU-R P. 835-

5, ITU-R 453 dan ITU R P. 618-12 menjadi rujukan untuk mengetahui redaman *scintillation*.

Redaman-redaman ini danat dilihat pada kedua tabel

Redaman-redaman ini dapat dilihat pada kedua tabel berikut ini.

Tabel 5 Gabungan redaman awan, atmosfer dan scintillation untuk komunikasi satelit C-band

Stasiun Bumi	Jalur	Redaman Lainnya Frekuensi C-Band (dB)							
	Jaiur	0.01%	0.5%	0.6%	0.7%	0.8%	0.9%		
Jakarta	Uplink	0,1228	0,0777	0,0760	0,0745	0,0733	0,0722		
Jakarta	Downlink	0,1037	0,0594	0,0577	0,0563	0,0551	0,0540		
Surabaya	Uplink	0,3394	0,1838	0,1779	0,1730	0,1687	0,1650		
Suravaya	Downlink	0,2521	0,1321	0,1275	0,1237	0,1204	0,1175		
Medan	Uplink	0,3413	0,1847	0,1787	0,1737	0,1695	0,1657		
Medan	Downlink	0,2536	0,1327	0,1281	0,1242	0,1209	0,1180		
Makassar	Uplink	0,3464	0,1876	0,1815	0,1765	0,1722	0,1683		
Makassar	Downlink	0,2574	0,1348	0,1301	0,1262	0,1229	0,1200		

Tabel 6 Gabungan redaman awan, atmosfer dan scintillation untuk komunikasi satelit Ka-band

Stasiun	Jalur	Redaman Lainnya Frekuensi Ka-Band (dB)						
Bumi	Jaiui	0.01%	0.5%	0.6%	0.7%	0.8%	0.9%	
Jakarta	<i>Uplink</i>	0,2328	0,1315	0,1277	0,1244	0,1217	0,1193	
Jakarta	Downlink	0,2135	0,1131	0,1093	0,1061	0,1033	0,1009	
Complement	Uplink	0,8013	0,4100	0,3951	0,3827	0,3720	0,3626	
Surabaya	Downlink	0,5909	0,2979	0,2868	0,2775	0,2695	0,2625	
Medan	Uplink	0,8064	0,4123	0,3974	0,3849	0,3741	0,3646	
Medan	Downlink	0,5946	0,2996	0,2885	0,2791	0,2710	0,2639	
Makassar	Uplink	0,8179	0,4184	0,4032	0,3906	0,3796	0,3701	
Makassar	Downlink	0,6033	0,3041	0,2928	0,2833	0,2751	0,2680	

III. LINK BUDGET

Parameter-parameter EIRP, frekuensi kerja, redaman-redaman, *figure of merit* dan konstanta Boltzman dibutuhkan untuk menilai *link budget* (C/No) jalur komunikasi dari stasiun bumi ke satelit dan dari satelit ke stasiun bumi. Serangkaian publikasi unutk menganalisis performansi *link budget* pada komunikasi satelit telah dilakukan oleh beberapa peneliti terdahulu [7], [8] [9]. Persamaanpersamaan berikut ini digunakan untuk mengetahui besarnya *link budget* pada komunikasi satelit.

$$\left(\frac{C}{N_0}\right)_u = EIRP_{SB} - FSL_u - (redaman) + \left(\frac{G}{T}\right)_{Sat} - k$$

$$\left(\frac{C}{N_0}\right)_d = EIRP_{Sat} - FSL_d - (redaman) + \left(\frac{G}{T}\right)_{SB} - k$$

$$\frac{1}{\binom{C}{N_o}}_{tot} = \frac{1}{\binom{C}{N_o}}_{u} + \frac{1}{\binom{C}{N_o}}_{d}$$

$$\operatorname{dan}\left(\frac{C}{N}\right) = \left(\frac{C}{N_o}\right) - 10\log BW$$

Tabel-tabel 7, 8, 9 dan 10 menampilkan nilai *link* budget untuk arah uplink dan downlink dan total dari komunikasi satelit berpita frekuensi C dan Ka.

Tabel 7. *Link budget* untuk *uplink* dan *downlink* komunikasi C-*band*

Stasiun Bumi	T-1	(C/N0) _{u&d} Frekuensi C- <i>Band</i>							
	Jalur	99.99%	99.5%	99.4%	99.3%	99.2%	99.1%		
	Uplink	138,27	139,43	139,46	139,48	139,50	139,52		
Jakarta	Downlink	118,93	119,37	119,38	119,39	119,40	119,41		
Surabaya	Uplink	133,39	134,36	134,39	134,40	134,42	134,43		
Surabaya	Downlink	115,26	115,52	115,53	115,54	115,54	115,54		
Medan	Uplink	133,23	134,33	134,36	134,38	134,40	134,41		
Medan	Downlink	115,22	115,51	115,52	115,53	115,53	115,54		
Mahaaaa	Uplink	133,35	134,33	134,36	134,38	134,39	134,40		
Makassar	Downlink	115,23	115,50	115,51	115,51	115,52	115,52		

Tabel 8. *Link budget* untuk *uplink* dan *downlink* komunikasi Ka-band

	Romanikasi Ha bana									
Stasiun Bumi	Jalur	(C/N0) u&d Frekuensi Ka-Band								
		99.99%	99.5%	99.4%	99.3%	99.2%	99.1%			
Jakarta	Uplink	88,78	108,37	109,08	109,65	110,13	110,53			
Јакаг та	Downlink	112,28	122,76	123,10	123,38	123,61	123,79			
Cumphana	Uplink	67,28	88,80	89,58	90,21	90,72	91,16			
Surabaya	Downlink	95,30	106,59	106,95	107,24	107,48	107,68			
M- 4	Uplink	63,54	87,72	88,68	89,45	90,09	90,63			
Medan	Downlink	93,41	106,10	106,55	106,91	107,20	107,45			
Makassar	Uplink	66,82	88,58	89,39	90,05	90,60	91,05			
Makassar	Downlink	95,10	106,48	106,86	107,17	107,42	107,63			

Tabel 9. C/No total untuk komunikasi C-band

uoci >.	tucci y. C/110 total antak komankasi C bana									
Jalur Ko	munikasi	(C/N0) _{tot} Frekuensi C-Band								
Sumber	Tujuan	99.99%	99.5%	99.4%	99.3%	99.2%	99.1%			
	Surabaya	115,24	115,51	115,51	115,52	115,52	115,53			
Jakarta	Medan	115,21	115,50	115,50	115,51	115,52	115,52			
	Makassar	115,21	115,48	115,49	115,49	115,50	115,50			
	Jakarta	119,25	119,46	119,47	119,47	119,47	119,48			
Surabaya	Medan	115,16	115,46	115,46	115,47	115,48	115,48			
	Makassar	115,16	115,44	115,45	115,46	115,46	115,46			
	Jakarta	119,24	119,46	119,47	119,47	119,47	119,48			
Medan	Surabaya	115,19	115,47	115,47	115,48	115,48	115,49			
	Makassar	115,16	115,44	115,45	115,46	115,46	115,46			
	Jakarta	119,25	119,46	119,47	119,47	119,47	119,48			
Makassar	Surabaya	115,19	115,47	115,47	115,48	115,48	115,49			
	Medan	115.16	115.46	115.46	115.47	115.48	115.48			

Tabel 10. C/No total untuk komunikasi Ka-band

Jalur Ko	munikasi	((C/N0)tot	Frekuen	si Ka- <i>Ba</i>	and (dB)	
Sumber	Tujuan	99.99%	99.5%	99.4%	99.3%	99.2%	99.1%
	Surabaya	89,40	104,73	105,20	105,57	105,87	106,13
Jakarta	Medan	88,83	104,40	104,92	105,34	105,68	105,96
	Makassar	89,35	104,66	105,14	105,52	105,83	106,09
	Jakarta	67,28	88,80	89,58	90,20	90,72	91,16
Surabaya	Medan	67,27	88,72	89,49	90,11	90,63	91,06
	Makassar	67,28	88,73	89,50	90,12	90,63	91,06
	Jakarta	63,54	87,72	88,68	89,45	90,09	90,62
Medan	Surabaya	63,54	87,67	88,61	89,38	90,01	90,54
	Makassar	63,54	87,66	88,61	89,38	90,01	90,54
	Jakarta	66,82	88,58	89,39	90,05	90,59	91,05
Makassar	Surabaya	66,81	88,51	89,32	89,97	90,51	90,96
	Medan	66,81	88,50	89,31	89,96	90,50	90,95

IV. HASIL ANALISIS

Analisis performansi lintasan komunikasi satelit bergantung pada beberapa parameter antara lain Eb/No dan *margin* rute komunikasi. Variabelvariabel tersebut sangat erat kaitannya dengan teknik modulasi yang dipergunakan.

Untuk mengetahui nilai Eb/No diperoleh dengan menggunakan persamaan-persamaan di bawah ini

$$BW_{occ} = \frac{R_s}{FEC}(1+\alpha)$$

$$R_s = \frac{(R_b + overhead)}{n}$$

$$dan \frac{E_b}{N_o} = \frac{C}{N_o} - 10\log(R_b)$$

Jumlah bit n untuk modulasi-modulasi QPSK adalah 2.

Nilai Eb/No berdasarkan modulasi QPSK untuk kedua sistem komunikasi satelit berfrekuensi C dan Ka diperlihatkan oleh tabel-tabel berikut ini.

Tabel 11. Eb/No QPSK untuk C-band

Jalur Ko	munikasi	Eb/No modulasi QPSK pada Frekuensi C- <i>Band</i> (dB)							
Asal	Tujuan	99.99%	99.5%	99.4%	99.3%	99.2%	99.1%		
	Surabaya	38,933	39,198	39,205	39,211	39,215	39,219		
Jakarta	Medan	38,897	39,187	39,195	39,201	39,206	39,210		
	Makassar	38,903	39,173	39,180	39,186	39,190	39,194		
	Jakarta	42,941	43,154	43,158	43,162	43,165	43,167		
Surabaya	Medan	38,849	39,147	39,155	39,161	39,166	39,171		
	Makassar	38,855	39,133	39,140	39,146	39,151	39,155		
	Jakarta	42,935	43,153	43,158	43,161	43,164	43,167		
Medan	Surabaya	38,883	39,158	39,165	39,171	39,175	39,180		
	Makassar	38,853	39,132	39,140	39,146	39,151	39,155		
	Jakarta	42,939	43,153	43,158	43,161	43,164	43,167		
Makassar	Surabaya	38,884	39,158	39,165	39,171	39,175	39,179		
	Medan	38,849	39,147	39,155	39,161	39,166	39,170		

Besaran nilai Eb/No bermodulasi QPSK pada komunikasi satelit berfrekuensi C-band memperlihatkan semua lintasan availability di atas Eb/No yang diinginkan yaitu 12 dB. Sedangkan komunikasi bersatelit Ka-band tidak demikian.

Tabel 12. Eb/No QPSK untuk Ka-band

Jalur Ko	munikasi	Eb/No modulasi QPSK pada Frekuensi Ka <i>-Band</i> (dB)							
Asal	Tujuan	99.99%	99.5%	99.4%	99.3%	99.2%	99.1%		
	Surabaya	13,089	28,416	28,886	29,260	29,565	29,819		
Jakarta	Medan	12,521	28,094	28,613	29,028	29,369	29,652		
	Makassar	13,036	28,348	28,827	29,209	29,520	29,779		
	Jakarta	-9,026	12,490	13,267	13,895	14,413	14,848		
Surabaya	Medan	-9,036	12,411	13,183	13,805	14,318	14,749		
	Makassar	-9,033	12,418	13,189	13,810	14,323	14,753		
	Jakarta	-12,770	11,411	12,367	13,140	13,779	14,315		
Medan	Surabaya	-12,773	11,356	12,304	13,070	13,703	14,232		
	Makassar	-12,773	11,355	12,303	13,069	13,701	14,231		
	Jakarta	-9,493	12,269	13,084	13,742	14,285	14,741		
Makassar	Surabaya	-9,499	12,202	13,010	13,661	14,199	14,649		
	Medan	-9,502	12,194	13,002	13,655	14,193	14,644		

Selanjutnya, nilai margin pada jalur komunikasi dapat diketahui dengan menggunakan persamaanpersamaan berikut ini

Margin =
$$\left(\frac{C}{N}\right)_{\text{rotal}} - \left(\frac{C}{N}\right)_{\text{required}}$$

dengan $\left(\frac{C}{N}\right)_{\text{rotal}} = \left(\frac{C}{N_0}\right)_{\text{total}} - 73,5835$

sedangkan (C/N)_{requierd} diklasifikasikan berdasarkan teknik modulasi digitalnya.

Tabel 13. *Margin* lintasan QPSK frekuensi C-band

Jalur Komunikasi		Margin modulasi QPSK pada Frekuensi C-Band (dB)							
Asal	Tujuan	99.99%	99.5%	99.4%	99.3%	99.2%	99.1%		
Jakarta	Surabaya	26,933	27,198	27,205	27,211	27,215	27,219		
	Medan	26,897	27,187	27,195	27,201	27,206	27,210		
	Makassar	26,903	27,173	27,180	27,186	27,190	27,194		
Surabaya	Jakarta	30,941	31,154	31,158	31,162	31,165	31,167		
	Medan	26,849	27,147	27,155	27,161	27,166	27,171		
	Makassar	26,855	27,133	27,140	27,146	27,151	27,155		
Medan	Jakarta	30,935	31,153	31,158	31,161	31,164	31,167		
	Surabaya	26,883	27,158	27,165	27,171	27,175	27,180		
	Makassar	26,853	27,132	27,140	27,146	27,151	27,155		
Makassar	Jakarta	30,939	31,153	31,158	31,161	31,164	31,167		
	Surabaya	26,884	27,158	27,165	27,171	27,175	27,179		
	Medan	26,849	27,147	27,155	27,161	27,166	27,170		

Lintasan *margin* untuk sistem komunikasi satelit yang bekerja pada frekuensi C-band dengan mengimplementasikan QPSK, 8PSK, dan 16QAM dapat diterapkan pada keenam *availability* 99,1%, 99,2%, 99,3%, 99,4%, 99,5%, dan 99,99%. Terlihat bahwa semua kemungkinan komunikasi menggunakan frekuensi ini memberikan *margin* yang sangat baik di atas 26 dB.

Sementara itu, komunikasi satelit menggunakan pita frekuensi Ka tidak semua jalur komunikasinya memiliki *margin. Margin* untuk lintasan yang aman berkomunikasi pada sistem komunikasi ini adalah informasi yang melalui stasiun Hub Jakarta. Margin tersebut berada di atas 16 dB untuk pengamatan selain dari 0.01%.

Tabel 14. Margin lintasan QPSK frekuensi Ka-band

Jalur Komunikasi		Margin modulasi QPSK pada Frekuensi Ka-Band (dB)							
Asal	Tujuan	99.99%	99.5%	99.4%	99.3%	99.2%	99.1%		
Jakarta	Surabaya	1,089	16,416	16,886	17,260	17,565	17,819		
	Medan	0,521	16,094	16,613	17,028	17,369	17,652		
	Makassar	1,036	16,348	16,827	17,209	17,520	17,779		
Surabaya	Jakarta	-21,026	0,490	1,267	1,895	2,413	2,848		
	Medan	-21,036	0,411	1,183	1,805	2,318	2,749		
	Makassar	-21,033	0,418	1,189	1,810	2,323	2,753		
Medan	Jakarta	-24,770	-0,589	0,367	1,140	1,779	2,315		
	Surabaya	-24,773	-0,644	0,304	1,070	1,703	2,232		
	Makassar	-24,773	-0,645	0,303	1,069	1,701	2,231		
Makassar	Jakarta	-21,493	0,269	1,084	1,742	2,285	2,741		
	Surabaya	-21,499	0,202	1,010	1,661	2,199	2,649		
	Medan	-21,502	0,194	1,002	1,655	2,193	2,644		

IV. KESIMPULAN

Komunikasi satelit C-band untuk ketiga teknik modulasi terbukti handal dalam melayani komunikasi di keempat wilayah Indonesia yaitu Jakarta, Medan, Surabaya dan Makassar untuk semua waktu pengamatan. Sementara itu, komunikasi satelit Ka-band tetap aman diterapkan di wilayah-wiayah tersebut untuk komunikasi yang melalui stasiun Hub Jakarta pada availability 99,1% - 99,5%. Pengembangan penelitian ini dapat dilakukan dengan meninjau penempatan satelit di orbit tertentu dan persen waktu pengamatan yang lainnya serta memperhatikan diversitas stasiun bumi berjarak tertentu pada suatu wilayah untuk mengantisipasi curah hujan tinggi.

DAFTAR PUSTAKA

- [1] A. A. Atayero, "Satellite link design: A tutorial," *Int. J. Electr. Comput. Sci. IJECS-IJENS*, vol. 11, no. 4, 2011.
- [2] Z. B. Hasanuddin, "Design of Ka-band Satellite Links in Indonesia," *J. Electr. Comput. Energ. Electron. Commun. Eng.*, vol. 8, no. 8, 2014.
- [3] M. M. J. L. van de Kamp, J. K. Tervonen, E. T. Salonen, and J. P. V. P. Baptista, "Improved models for long-term prediction of tropospheric scintillation on slant paths," *IEEE Trans. Antennas Propag.*, vol. 47, no. 2, pp. 249–260, 1999.
- [4] R. L. Freeman, *Radio system design for telecommunications*, vol. 98. John Wiley & Sons, 2006.
- [5] J. S. Ojo, M. O. Ajewole, and S. K. Sarkar, "Rain rate and rain attenuation prediction for satellite communication in Ku and Ka bands over Nigeria.," *Prog. Electromagn. Res.*, vol. 5, pp. 207–223, 2008.
- [6] J. Christensen, "Itu regulations for ka-band satellite networks," in 30th AIAA International Communications Satellite System Conference (ICSSC), 2012, p. 15179.
- [7] A. K. Kundu, M. T. H. Khan, W. Sharmin, M. O. Goni, and K. A. Barket, "Designing a mobile satellite communication Antenna and Link Budget Optimization," in 2013 International Conference on Electrical Information and Communication Technology (EICT), 2014, pp. 1–6.
- [8] Y. Tepetam, "Analysis of Turkish communications sector and determination of critical success factors," NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2014.
- [9] P. Series, "Propagation data and prediction methods required for the design of Earth-space telecommunication systems," *Recomm. ITU-R*, pp. 612–618, 2015.