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Abstract – Humanity currently lives in a technological 

era that witnesses rapid progress in multiple fields. 

Digital image processing is one of the modern 

technologies that has provided practical answers to many 

challenges including image enhancement, analysis, 

reconstruction, recovery, compression, processing, and 

understanding. One of these notable challenges relates to 

underwater photography. Underwater images are 

always exposed to less-than-ideal conditions due to 

environmental and physical factors. These include 

refraction of light in water, scattering of particles and 

dust in the aquatic medium, lack of illumination in deep 

water, and poor contrast. These challenges make it 

extremely difficult to analyze and extract valuable 

information without advanced processing. In this study, 

an improved color balance-fusion algorithm is provided 

by improving the image visuality and modifying some 

equations to obtain sharper and clearer images. The 

proposed algorithm begins by finding the white balance 

of the input RGB color image, after that, it improves the 

intensity. Next, the edges are improved using the 

ADUSM filter separately. The weights are then found for 

each image and combined to find naive fusion. A color 

restoration technique is used to process the resultant 

image and create the final image. A comparison with ten 

algorithms has been made and the output images are 

assessed using UISM and UICM metrics. Experimental 

results showed that this algorithm can significantly 

improve underwater images, increasing image clarity 

and making colors clearer.  
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I. INTRODUCTION 

Digital image processing (DIP) methods have 

produced practical solutions to a variety of areas, 

including enhancement, analysis, reconstruction, 

restoration, and manipulation. Image degradations can 

be found in a variety of images such as underwater 

images. Experts’ attention has recently been drawn to 

the processing of underwater images due to the 

importance of these images [1-3]. The quality of 

underwater images is vital in scientific activities like 

watching marine life, counting populations, and 

studying geological or biological conditions. The main 

challenge in obtaining such images is the haziness 

caused by light that reflects off the ocean's surface and 

is subsequently scattered by water molecules. 

Additionally, because different wavelengths of light 

absorb light differently, there are color variances [4-

6]. Due to light scattering and color alterations, images 

captured underwater suffer from contrast loss and 

color divergence. Plankton, minerals, and sand found 

in rivers, lakes, and seas are among the suspended 

particles that contribute to murkiness.  

Part of the light reflected from objects moving in 

the direction of the camera collides because of these 

suspended particles. Different light wavelengths are 

attenuated in the water body in different ratios. Due to 

this uneven attenuation, color bias is frequently visible 

in underwater photographs. The degeneration of 

underwater images can also be caused by suspended 

particles in the water. Figure 1 illustrates how nearby 

particles affect incident light's small-angle scattering 

(forward scattering) while nearby particles affect 

ambient light's large-angle scattering (backscattering), 

which enters the camera lens. These light refractions 

result in grainy and blurry underwater photographs. 

Figure 1 depicts the installation of artificial lighting 

systems to provide the necessary illumination for the 

gloomy deep-sea environment as underwater missions 

go deeper. In Figure 2, various underwater image 

samples are provided.  

Low visibility is a result of backscattering and light 

attenuation, which is problematic for underwater 

photography. Random light attenuation causes the 

illusion of murkiness. Some of the light reflecting 

from the medium along the line of sight reduces the 

contrast of recorded images. Different undersea 

ecosystems have various basic visual degeneration 

causes. Recently, several strategies to enhance the 

caliber of underwater photos have been suggested by 

researchers [8-10].  
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Figure 1. Underwater optical imaging in shallow 
water and deep sea [7]. 

 

 

Figure 2. Samples of different underwater images. 

In addition, various research works related to 

enhancing underwater images are reviewed to deliver 

the necessary knowledge of the previously developed 

underwater enhancement algorithms. In 2012 [11], a 

dark channel scene depth derivation method was 

introduced to estimate and calculate the separation 

between the subject and the camera to get the derived 

depth map (DDM). Using the DDM, the front and back 

regions within the image are divided into two parts. 

The influence of haze and color change from the object 

to the camera is subsequently eliminated using a 

drying algorithm for wavelength adjustment. The 

remaining power is then divided among the multiple 

color channels in the back to determine the depth of 

the water. To modify the blue tone to its true color, a 

compensation process is applied, and the output image 

is created. 

In 2013 [12], an underwater UDCP algorithm 

was proposed that utilizes the standard dark channel 

prior (DCP) in an exceptional way, in that only the 

green and blue channels of the image are subjected to 

the DCP concept because the high absorption effect 

associated with underwater conditions significantly 

affects these two layers. In the UDCP, dark areas are 

detected using a specialized approach with is different 

from the one used by the standard DCP. In addition, it 

utilizes a spectral matting approach to enhance the 

approximation of transmission which is considered an 

important phase in the standard DCP. In addition, in 

2017 [13] the BLA was introduced, in that it generates 

an enhanced image using three steps. The first step 

involves computing the noise map and then processing 

it with a Gaussian filter. Next, the max filter is used to 

approximate the blur map followed by determining the 

blurriness (B) using the guided filter. The second step 

involves determining the light absorption amount by 

selecting background light from the hazy image 

regions to be used next in obtaining the transmission 

map (TM). The third step involves creating the output 

image using TM, B, and the original image. In 2017 

[14], the TSA was introduced, which utilizes two basic 

principles of contrast improvement and color 

correction. In the initial phase, for color correction, it 

applies a piecewise linear technique to the input 

image's saturation channel. Next, the image is 

transformed to the LAB domain, and an adaptive 

histogram equalization is applied to improve contrast. 

Finally, the filtered image is converted to RGB to 

obtain the final image. 

Furthermore, in 2018 [15], a DHW algorithm was 

developed, in that it estimates the TM using an end-to-

end convolutional neural network. It also makes use of 

the bilateral adaptive filter to improve the TM. 

Moreover, a color aberration removal strategy based 

on white balance is utilized for color enhancement. 

Next, to get a sharper image, apply the Laplace filter.  

Lastly, the output image is produced using the hybrid 

wavelets concept. Moreover, in 2019 [16], the GIF 

method was proposed, in that white balancing is 

initially performed on the input image for initial image 

adjustment. Then, the adjusted image is obtained, and 

two images are generated from it, one having better 

sharpness and the other one owning a corrected 

gamma. Next, for both images, the weight map is 

generated after detecting the salient features using a 

directed filter. The final image is generated using the 

weight generated weight maps when merging the 

sharpened and the gamma-corrected images.  

In 2020 [17], the HF algorithm was introduced, in 

that underwater white balance (UWB) is used as the 

initial processing step for the input image. UWB 

consists of four main steps: color compensation gray-

world approach, mapping, and stretching of the 

histogram. The input image and the UWB output are 

then sent to the variational contrast and saturation 

enhancement (VCSE) phase after being processed by 

a guided filter. VCSE is an approach that improves the 

contrast and saturation of the image through multiple 

iterations to generate the final image. Moreover, in 

2021 [18], a hybrid approach was proposed, as the red 

channel's density is unstable in an aquatic 

environment, whereby the DCP method is applied to 

the blue channel instead of the red channel. It involves 

splitting the image into patches, calculating the light 

amount for each patch, and smoothing the TM via a 

directed filter. Next, the image is transformed into the 

HSV color model, and a linear stretching approach is 

applied to all the channels. Next, contrast stretching is 

applied to the saturation and value channels, and the 

output image is created by changing it to RGB. The 

reviewed studies are summed up in Table 1. 
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Table 1. The reviewed methods synopsis. 

Method Concept Intricacy Pros Cons 

WCD [11] 
Wavelength compensation and 

dehazing 
Moderate Preserve the color of the image 

relatively large white 

shiny regions 

UDCP [12] dark channel prior Low high speed 
limited in underwater 

conditions 

BLA [13] Blurriness and light absorption Moderate Increase the Contrast much complicated 

TSA [14] Color and contrast correction Low high speed unnatural contrast 

DHW [15] DehazeNet and hybrid wavelets High 
the best performance in terms of 

the GLCM features and DMOS. 

increasing color 

distortion 

GIF [16] white balancing, sharpening, and 

gamma correction 
High 

work well on images that have 

more of a blue color composition 

increase in white-

balance 

HF [17] 
white balance with Enhancement of 

saturation and variational contrast 
Moderate 

enhancements to saturation and 

contrast 

cannot image 

recognition and target 

detection 

HA [18] dark channel prior with guided filter Moderate 
good output image contrast and 

high-speed 

unclear background 

objects 

MWMGF 

[19] 

Fusion of multiple weights and 

granularities 
High Balanced CE some noise is amplified 

Lastly, in 2022 [19], the MWMGF approach is 

introduced, it first corrects the colors by using color 

weight balance and adaptive histogram equalization. 

From the previous step, Laplace contrast, local 

contrast, saliency, saturation, and exposure weights 

are among the various weights that are determined. 

Having the input and processed images with the 

computed weights, the output image is generated using 

a multigrain fusion procedure.  

The reviewed algorithms illustrated the utilization 

of various concepts, in that these concepts have 

drawbacks such as the generation of white halos, 

works with images captured in certain conditions only, 

high computational cost, unnatural contrast, color 

distortions, brightness amplification, and noise 

augmentation. These drawbacks should be avoided 

while considering their advantages to create a better 

method for underwater image enhancement. The 

literature review methods demonstrated that there are 

still promising chances to develop a reliable algorithm 

as the existing methods have various drawbacks. 

Therefore, the proposed algorithm is introduced in this 

study, in that it is an improved version of an existing 

algorithm. It includes better brightness and contrast 

enhancement procedures, implements an improved 

sharpening method, and involves a color restoration 

process. These additions made the proposed algorithm 

better than its original version and other existing 

algorithms. The remaining parts of the study are as 

follows: in Section II, a detailed description of the 

developed algorithm is given, while in Section III, the 

results on several aspects with the related analysis are 

provided. Finally, a concise conclusion is stated. 

II. PROPOSED ALGORITHM 

 The proposed algorithm's primary goal is to extract 
high-quality underwater images with maximum details 
and color information from their distorted versions. As 
stated in the literature review, different algorithms 

have been proposed for underwater images, yet not all 
attained the anticipated results and hence, the 
opportunity still stands to develop an algorithm for 
better underwater image enhancement. For this 
purpose, a thorough search for an algorithm to be 
developed has been made and an algorithm named 
color balance and fusion (CBF) [20] has been selected 
as the CBF has a low-complexity structure, color 
correction phase, contrast adjustment step, sharpness 
enhancement phase, and a simple image fusion 
approach. 

 This algorithm simply works as follows: it begins 

by receiving the input image. Then, a white-balancing 

process is applied to correct the colors and reduce the 

color cast produced by the light scattering in the 

underwater environment. Next, The outcomes of the 

preceding step are used to create two images, in that 

the first image is handled by a gamma correction 

approach to adjust the color contrast while the second 

image is sharpened using a normalized unsharp 

masking filter to increase the acutance of details. Next, 

the weighting maps the normalized weights for both 

maps are determined to be fused. Accordingly, a naive 

fusion approach is implemented to blend the 

normalized weights with the sharpened and contrast-

enhanced images to the output image that has better 

colors, tuned contrast, and better acutance. "Figure 3" 

shows the diagram of the CBF algorithm. 

 A detailed explanation of the CBF algorithm goes 

as follows: the algorithm receives a color RGB 

underwater image (I) in the range [0,1] and starts the 

white balancing (WB) step, which includes the red 

color compensation (RCC) step followed by the 

application of a gray world (GW) algorithm to produce 

the color-balanced image. Accordingly, the WB step 

begins by splitting the image into its three main 

channels Red Ir, Green Ig, and Blue Ib. Next, the mean 

value for each channel is computed as µr for Ir, µg for 

Ig, and µb for Ib.  
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Figure 3. Diagram of the original CBF algorithm. 

  The mean is computed by summing all the channel 

pixel values and then dividing them by the number of 

pixels in that channel. The RCC step considers the 

following issues: the green channel is highly 

maintained in the underwater image, so the green 

channel will not be modified. Instead, it will be used 

as is as well, and it will be utilized to majorly 

compensate the red channel Irc and slightly 

compensate the blue channel Ibc. Such step can be 

mathematically computed using the following 

equations: 

   1rc r g r r gI I I I          (1) 

   1bc b g b b gI I I I          (2) 

 where α is a scalar that is α = 0.1. After the above-

mentioned compensation step, a color RGB image (W) 

is formed from red Irc, green Ig, and blue Ibc. Next, the 

GW algorithm [21, 22] is implemented as follows: it 

receives the image (W) in an RGB form and linearizes 

and gamma-corrects the RGB values then computes 

the mean value for each layer (µWr, µWg, µWb) in this 

image. Next, it computes the average gray value using 

the following equation: 

3

Wr Wg Wb
G

   
  (3) 

 After that, it computes the scalar values (Sv1, Sv2, 

Sv3) that are used to adjust each channel using the 

following equations: 

1v

Wr

G
S


  (4) 

2v

Wg

G
S


  (5) 

3v

Wb

G
S


  (6) 

 After that, each layer is adjusted using the 

following equations: 

1r v rL S W   (7) 
2g v gL S W   (8) 

3b v bL S W   (9) 

 where, L is the resulting image from the GW 

algorithm, (Wr, Wg, Wb) are the linearized gamma-

corrected red, green, and blue channels of image W. 

Next, the result (L) of the GW algorithm is further 

adjusted using a chromatic adaptation (CA) approach 

with a Bradford model [23]. The CA approach is an 

event that retains the color look nearly constant 

through fluctuations in the color of the illuminated 

[24]. It is necessary to use CA so that the colors appear 

more correct to the viewer. The CA approach includes 

the following steps: (1) transform the image to 

Bradford cone response domain; (2) scale elements by 

certain factors; (3) apply the inverse transform. After 

that, the gamma correction approach is applied to the 

linear RGB values to produce an output image (Q) in 

the standard RGB format, which is appropriate for 

display.  

 After the completion of the white balancing step 

and obtaining image (Q), two processes of color 

contrast enhancement and image sharpening are 

applied independently on the white balanced image 

(Q) to produce two different images that are fused 

using a naive image fusion procedure. To improve the 

color contrast, a gamma correction process is applied 

as the image (Q) tends to appear somewhat bright and 

gamma correction can reduce such unwanted 

brightness while increasing the contrast for better 

detail representation. The utilized gamma correction 

approach can be expressed as follows [25]: 
G c Q   (10) 

 where the two scalars c and γ determine how the 

above approach's curve is shaped, and G is the gamma-

corrected image. As for the sharpening procedure, a 

normalized unsharp mask (NUM) filter is applied as it 

does not introduce the unwanted effects of the 

standard unsharp mask filter, and it is fully automated 

and does not need parameter tuning as well. The NUM 

filter can be expressed as follows [26]:  

  
2

Q Q K
A

  
  (11) 

 where A is the sharpened image, K is a Gaussian 

filtered counterpart of image Q, and N{.} is a linear 

normalization process. The normalization helps in 

rescaling the color values to the full range so that the 

image's visual details are represented in a better way. 

At this point, the weighing maps and the normalized 

weights for images G and A must be determined. To 

do that, the RGB domain of images A and G is 

transformed into the LAB domain, and the (L) channel 

is adopted as E1 for A and E2 for G, in that (R1=E1/255) 
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and (R2=E2/255), as R1 and R2 represent the luminance 

of each image. Next, the "Laplacian contrast weight" 

(LCW) is computed to approximate the global contrast 

using the luminance layers R1 and R2 as follows:  

1 1 LLCW R K   (12) 

2 2 LLCW R K   (13) 

 where, KL is the Laplacian kernel [1, 1, 1; 1, -8, 1; 

1, 1, 1], and (*) is a convolution operation. Next, the 

saliency weight (SYW) is determined for both images 

A and G to highlight the salient items that their 

eminence is attenuated when captured in an 

underwater environment. This is done using a 

frequency-tuned (FT) algorithm for salient area 

recognition proposed by [27]. Both G and A images 

must be processed by the FT algorithm to produce two 

saliency weights that are needed later when computing 

the normalized weights required for the fusion 

process.  

 Let’s denote the input to the FT algorithm as F, the 

FT algorithm works as follows: Firstly, image F is first 

filtered by a Gaussian low pass filter to produce a 

blurry version of F denoted as FG. Next, image FG is 

converted to the LAB color space, to get three 

channels of LFG, AFG, and BFG. After that, the mean 

value for each channel is determined as (µL, µA, µB) to 

be used to compute the saliency weight as follows: 

     
2 2 2

FG L FG A FG BSYW L A B         (14) 

 When the above-mentioned steps are applied to 

image A, its saliency weight is denoted as SYW1, and 

when applied to image G, its saliency weight is 

denoted as SYW2. After that, the saturation weight 

(SAW) must be determined as well for both images A 

and G, as it allows the fusion process to adjust to 

chromatic data by utilizing the extremely saturated 

areas in the image. 

     
22 2

1 1 1

1
3

r g bA R A R A R
SAW

    
  (15) 

     
22 2

2 2 2

2
3

r g bG R G R G R
SAW

    
  (16) 

 Next, the normalized weights NW1 and NW2 are 

computed from the above-stated weights to be used in 

the fusion process as follows:  

1 1

1 11 2 2

1
1

2

0.1

0.2

SYW SAW

S

LCW
NW

LC WYW SAW SW LC YW SAW








 



  
 (17) 

2 2

1 11 2 2

2
2

2

0.1

0.2

SYW SAW

S

LCW
NW

LC WYW SAW SW LC YW SAW








 



  
 (18) 

 Finally, a naive fusion (NF) process is applied to 

reconstruct a better image using the predetermined 

normalized weights using the following equation [28]: 
   1 2NF NW A NW G     (19) 

 where NF represents the enhanced underwater 

image. When dealing with underwater images, the 

CBF algorithm may show some drawbacks as 

mentioned earlier. Therefore, To achieve better 

results, a newly developed algorithm based on the 

CBF model and other appropriate processing concepts 

is introduced to adequately process different 

underwater images. The proposed algorithm is 

expected to process many underwater images and 

produce results with good color, normal contrast, few 

impurities, and good brightness.  

The developments on the CBF are as follows: Firstly, 

instead of using gamma correction, an ABCETP 

algorithm developed by [29], is utilized with a TGA 

process to improve the contrast and brightness. 

Secondly, instead of using the NUM filter, an 

ADUSM filter proposed by [30], is used instead to 

provide a better sharpness. Finally, a color restoration 

step proposed by [31], is used as a final step to improve 

the colors and produce better results. Figure 4 shows 

the suggested algorithm's diagram. As for the 

ABCETP [29], (A) stands for ameliorated, (BCET) 

stands for balance contrast enhancement technique, 

and (P) stands for parabolic function. It begins by 

receiving the input image (X), contrast enhancement 

parameter (λ), and brightness enhancement parameter 

(δ), and setting these parameters as L=0 and H=1. 

Next, it finds the standard deviation (ς) and the 

discrete entropy (η) from the input image as follows: 

 where p(xi) represents the xi probability density 

function; xi is the input image in a vector form. After 

that, the three ABCETP coefficients are computed 

using the following equations: 

 where h and l are the highest and lowest values in 

X. Following, the modified parabolic function as 

follows: 

  
2

sinhY A X B C    (26) 

After that, a post-processing phase is implemented 

which includes the following equations: 

 

  

exp
1

1 exp

Y
G

Y



 

 
 (27) 

   
1

max minG G
 


 (28) 

 
   

min

max min

G

G G
 


 (29) 

R G     (30) 

Next, a transform gamma adjustment (TGA) process 

is applied to further adjust the output of the ABCETP  

 

algorithm. The TGA is computed as [32] : 

 
 

max
max

R
TGA R

R


 

   
 

 (31) 

 

2

1

1

1

N

i

i

x
N

 


 



 
(20) 

1

1 N

i

i

x
N




 
 

(21) 

   2logi i

i

p x p x  
 

(22) 

   

   

2 2 1

2 1

h l
B

h l

  

  

  


    

 (23) 

( )( 2 )

H L
A

h l h l B




  

 (24) 

 
2

C L A l B    (25) 
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Figure 4. Diagram of the developed algorithm. 

 where TGA is the output image and γ is a scalar. 

For most images, the value of γ = 2. As for the 

ADUSM [30], (AD) stands for anisotropic diffusion, 

and (USM) is unsharp masking. ADUSM starts by 

getting the input image fi,j and the sharpness parameter 

(λ), setting the iterations to 20, computing the image 

size, and determining the smoothness parameter K. 

Next, an iterative process starts and the first issue to be 

calculated is the neighbor differences in four 

directions using the following equations: 

 where, fi,j = Ii,j at iteration one only. Ii,j is a filtered 

image in every iteration. Next, the conduction 

operators are computed using the following equations: 

2

,

1

1

N

N i j

g
I

K


 

  
 

  

(36) 

2

,

1

1

S

S i j

g
I

K


 

  
 

  

(37) 

2

,

1

1

E

E i j

g
I

K


 

  
 

  

(38) 

2

,

1

1

W

W i j

g
I

K


 

  
 

 
 

(39) 

 
  

,

,

mean
2

0.75

i j

i j

f
K

f

 
  
 
 

 (40) 

 where ς represents the standard deviation. After 

that, the smoothed image is determined using the 

following equation: 

   

   

, ,

, ,

, ,

0.25
N N i j S S i j

i j i j

E E i j W W i j

g I g I
I I

g I g I

    
   
   
 

 (41) 

Finally, the USM filter is computed as follows: 

, , , ,i j i j i j i jQ f f I       (42) 

 where, Qi,j is the output image of ADUSM. As for 

the color restoration step, the method proposed by [31] 

has been utilized, in that it receives the input image NF 

and divides it by three to get image av. Next, it 

computes parameters c and v that will be used in color 

restoration as follows: 

r g bv NF NF NF    (43) 
   log 128* 1 log 1c t v     (44) 

 where, NFr, NFg, and NFb are the red, green, and 

blue layers of NF, and t is NFr. Next, a gamma 

correction step is implemented as follows: 

 avc av c


   (45) 

 where γ has the same value as the γ in Eq (31). 

Following, the range for color correction is computed 

as follows: 

         rn avc avc d avc avc d                (46) 

 where µ represents the mean, ς is the standard 

deviation, and d is a scalar that represents the amount 

of color restoration in that (d > 0), and a higher value 

gives more colors to the recovered image. At this 

point, if rn = 0, then it would become rn = 1 to avoid 

the division by 0 in the following step. The final 

restored image is obtained using the following 

equation: 

    2

255
avc avc avc d

res
rn

        
 
 

 (47) 

 where res is the output image of the algorithm. 

III. RESULTS AND DISCUSSION 

 The results and accompanying remarks are 

provided in this section to examine and illustrate the 

developed algorithm's processing capabilities using a 

dataset of underwater image degradations. The dataset 

comprising 950 authentic underwater images was 

utilized. These images were split into two segments: 

the first section contained 890 images, each paired 

with corresponding reference images. The remaining 

sixty images posed a challenge as satisfactory 

reference images were challenging to obtain, and all 

these images exhibited natural degradation [33].  

 To measure the accuracy of the output images in 

the performed comparisons, two specialized 

evaluation methods were used namely, underwater 

, 1, ,N i j i j i jI I I    (32) 
, 1, ,S i j i j i jI I I    (33) 
, , 1 ,E i j i j i jI I I    (34) 
, , 1 ,W i j i j i jI I I    (35) 
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image sharpness measure (UISM), and underwater 

image colorfulness measure (UICM). These methods 

are important tools for objective quality assessment, as 

they consider dissimilar image attributes inspired by 

the human visual system (HVS). UISM measures the 

image acutance (sharpness) as the underwater 

scattering distorts the captured image and reduces its 

sharpness. To compute this metric, Sobel edge 

detection is first implemented, and the resulting edges 

are evaluated to measure the acutance. A lower UISM 

output indicates better sharpness [34]. The UICM on 

the other hand measures the image’s color intensity 

depending on Hering’s theory, which states that the 

HVS perceives pairs of colors rather than independent 

colors. Therefore, the color intensity is computed 

using red-green and yellow-blue pairs. A higher 

UICM output indicates better colorfulness [34].   

 The experimental results, which have good colors, 

demonstrated that the developed algorithm has 

promising capabilities in processing various 

underwater images that have deteriorated, sharp edges, 

better brightness, improved contrast, and no glaring 

processing mistakes, making them seem more genuine 

to the audience. As a result, a layer of distortions has 

vanished when comparing the unprocessed image with 

its processed version, and the true colors of the image 

have been restored. The operator's selection of the d 

value for retrieving the underwater image's color 

affects the development algorithm.  

 
Figure 5. The outcomes of the developed CBF 

algorithm. (a) degraded underwater images; (b) 

resulting images by the proposed algorithm with d = 

17, 8, 20, and 18, respectively. 

 

Figure 6. The outcomes of the developed CBF 

algorithm. (a) degraded underwater images; (b) 

resulting images by the proposed algorithm with d = 

25, 19, 18, and 23, respectively. 

 

Figure 7. The outcomes of the developed CBF 

algorithm. (a) degraded underwater images; (b) 

resulting images by the proposed algorithm with d = 7, 
30, 30, and 16, respectively. 

 

Figure 8. The outcomes of the developed CBF 

algorithm. (a) degraded underwater images; (b) 

resulting images by the proposed algorithm with d = 9, 
37, 20, and 18, respectively. 

 Figures (5 to 8) demonstrate the degraded images 
and their filtered versions by the developed algorithm. 
By looking at the results in Figures 5 to 8, it was found 
that a variety of distorted underwater images were 
used. Emphasis has been placed on images with green 
and blue colors because these colors retain their details 
better in a water environment since the red color loses 
its effect first due to its higher absorption of water. 
Images were also taken in different conditions 
including day and night and at varying water depths. 
The outcomes demonstrate how much the developed 
algorithm enhanced the distorted image quality. The 
algorithm was able to highlight details in the image 
remarkably and increase its clarity. The contrast is 
well-adjusted, colors are improved, and brightness and 
distortion issues have also been addressed. One 
notable achievement of the algorithm is effective color 
retrieval. This was accomplished by figuring out each 
image's proper d value, which varied based on the 
image's contrast, depth, and dominant color. 

 This contributed to improving the representation of 
colors and showing them accurately. Overall, it can be 
said that the developed algorithm has performed well 
when enhancing the underwater picture quality and 
achieving significant improvements in detail, contrast, 
and colors. In addition to what was mentioned above, 
the analysis also indicates that the developed 
algorithm was able to deal with special challenges 
faced in photographing underwater objects. For 
example, the effect of refraction of light in water, 
which significantly distorts images, has been 
successfully dealt with.  

 This effect is corrected, and the overall clarity of 
the images is improved. In addition, advanced 
techniques have been applied to remove distortions 
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caused by variable factors in the aquatic environment 
such as floating particles and plankton. The algorithm 
was able to improve the clarity of images and reduce 
blur related to these factors. From Figures 9 to 15 and 
Tables 2 to 4, It is observed that different results are 
obtained when various algorithms in concept are 
applied to a large number of underwater images. In this 
comprehensive evaluation of various image 
enhancement algorithms, we aimed to assess their 
performance across different metrics and criteria.  

 Each algorithm was rigorously tested and 
compared to shed light on its strengths and 
weaknesses. The results provide valuable insights for 
image processing applications and highlight the need 
for further optimization in certain areas. The WCD 
algorithm performed poorly; more work needs to be 
done to enhance colors and brighten the image. and 
was the third-fastest approach. In addition, the UDCP 
algorithm provided adequate colors with dark and 
unclear details. and was slow by scoring the 9th rank. 
Moreover, the BLA algorithm delivered a poor 
performance and an increase in contrast without any 
noticeable change in results, and it was ranked last in 
terms of speed because it involves many operations. 

 

Figure 9. Comparison outcomes (Set 1). (a) real-

degraded underwater image; the following images are 

enhanced by: (b) WCD, (c) UDCP, (d) BLA, (e) TSA, 
(f) DHW, (g) GIF, (h) HF, (i) HA, (j) MWMGF, (k) 

CBF (original), (l) Our method. 

 

Figure 10. Comparison outcomes (Set 2). (a) real-

degraded underwater image; the following images are 
enhanced by: (b) WCD, (c) UDCP, (d) BLA, (e) TSA, 

(f) DHW, (g) GIF, (h) HF, (i) HA, (j) MWMGF, (k) 

CBF (original), (l) Our method. 

 

Figure 11. Comparison outcomes (Set 3). (a) real-

degraded underwater image; the following images are 
enhanced by: (b) WCD, (c) UDCP, (d) BLA, (e) TSA, 

(f) DHW, (g) GIF, (h) HF, (i) HA, (j) MWMGF, (k) 

CBF (original), (l) Our method. 
 

 

Figure 12. Comparison outcomes (Set 4). (a) real-
degraded underwater image; the following images are 

enhanced by: (b) WCD, (c) UDCP, (d) BLA, (e) TSA, 

(f) DHW, (g) GIF, (h) HF, (i) HA, (j) MWMGF, (k) 

CBF (original), (l) Our method. 

 Furthermore, the TSA algorithm provided with 
dark appearance, Still, it was the sixth-fastest method 
overall. Moreover, the DHW Algorithm delivered an 
unpleasant performance, the image appears dark, 
details and colors are blurred, increasing color 
distortion, and ranked 8th in terms of speed. 
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Table 2. The recorded accuracies of the UISM metric ↓. 

 

Table 3. The recorded accuracies of the UICM metric↑. 

 

Table 4. The Application Times (in Seconds) for the Comparison Algorithms ↓. 

No. 
Original 

CBF 
MWMGF HA HF GIF DHW TSA BLA UDCP WCD Proposed 

Img1 0.70503 2.00621 0.6114 7.0605 2.4459 2.8673 1.2968 13.433 3.7137 1.3188 0.777 

Img2 1.29190 2.44753 0.6647 17.701 4.4988 3.2457 2.9846 33.015 4.1931 1.5652 1.3597 

Img3 1.35398 1.51956 0.6250 15.595 2.7277 4.3321 3.5815 33.974 3.6417 1.3392 1.7178 

Img4 1.26778 2.51471 0.7043 17.959 2.7875 3.9117 2.9191 35.072 3.644 1.5796 2.5715 

Ava. 1.15467 2.12200 0.6513 14.578 3.1150 3.5892 2.6955 28.87 3.798 1.4507 1.6065 

 

 Furthermore, The performance of the GIF 
algorithm was comparatively poor. as it worked well 
with images that have more of a blue color 
composition and, an increase in white balance, and 
ranked the 7th fastest among the comparison methods. 
Furthermore, the HF algorithm delivered moderate 
performances by improving the contrast and saturation 
and ranked 10th in terms of speed. Furthermore, the 
HA algorithm delivered low performances with more 
need for color optimization and brightness adjustment. 

while being the fastest method. Moreover, the 
MWMGF algorithm delivered an above-moderate 
performance, with a balanced contrast, a greater need 
for color optimization and brightness adjustment, blur 
appearance, and some noise amplification, and ranked 
5th fastest method. Furthermore, the CBF algorithm 
delivered low performances, with more needed for 
color optimization and brightness adjustment, and 
ranked 2nd in terms of speed.  

 

 

Figure 13. The average readings of the UISM. 

No. 
Original 

CBF 
MWMGF HA HF GIF DHW TSA BLA UDCP WCD Proposed 

Img1 6.5699 6.8787 6.561 6.671 6.5853 6.7271 5.2798 6.7324 6.794 6.7861 6.6299 

Img2 8.8322 5.8341 9.717 8.748 5.9236 5.1271 7.2224 9.6987 8.822 9.0664 5.4222 

Img3 8.8248 6.2398 8.941 8.677 6.5711 6.4777 7.5595 8.6912 8.792 8.9616 6.4244 

Img4 8.8648 5.6674 12.183 8.765 5.7258 5.7439 8.6661 10.462 10.25 8.4744 4.8791 

Ava. 8.2729 6.155 9.350 8.215 6.20145 6.01895 7.18195 8.89617 8.6651 8.32212 5.8389 

No. 
Original 

CBF 
MWMGF HA HF GIF DHW TSA BLA UDCP WCD Proposed 

Img1 -0.0223 -28.916 12.088 -0.002 -0.6639 -27.114 0.010 0.0907 0.133 0.013 4.6398 

Img2 -0.0049 -17.688 -13.23 0.0077 1.4135 -17.502 0.008 0.0497 -0.077 -0.024 2.7747 

Img3 -0.0158 -8.2053 -12.15 -0.007 -1.9341 -8.5571 0.003 -0.0305 -0.069 -0.047 0.2891 

Img4 -0.0031 -46.070 -34.55 -0.031 0.5582 -46.503 0.010 -0.032 0.096 -0.084 3.0076 

Ava. -0.0115 -25.220 -22.59 -0.008 -0.1565 -24.919 0.008 0.0194 0.020 -0.035 2.6778 
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Figure 14. The average readings of the UICM. 

 

Figure 15. The average runtimes of the comparison methods. 

 In summary, these findings provide valuable 
guidance for selecting image enhancement algorithms 
based on specific requirements. Researchers and 
practitioners can use this information to make 
informed decisions regarding algorithm choices for 
different image-processing applications. Further 
research and development are encouraged to address 
the identified limitations and improve the overall 
performance of these algorithms. 

IV. CONCLUSION 

 This study introduced a multi-process 
methodology for underwater image enhancement. The 
methodology utilizes different processes and then 
blends the outcomes to produce the output image. The 
introduced methodology has been tested with many 
different images captured in unfavorable underwater 
conditions. Moreover, it has been compared with ten 
different methodologies, and a thorough analysis has 
been provided. The comparison outcomes have been 
assessed with two methods specifically designed for 

underwater images. From these actions, the proposed 
methodology showed promising results as it was able 
to process various images captured by different 
cameras, depths, and lighting conditions and can 
provide better colors, quality, and visibility for the 
details seen in the processed images. Moreover, it 
performed well when compared to other methods by 
outperforming the ten existing methods. This is a solid 
achievement as developing a legacy method to become 
better was fruitful as proven by the obtained results.  
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