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Abstract – Nowadays, the use of renewable energy is 

increasing, especially distributed power generation (DG) 

connected to the power grid. There are several problems 

when DG is connected to the grid. The principal obstacle 

pertains to the detachment of Distributed Generation 

(DG) from the grid, a phenomenon well known as 

islanding. Islanding detection is an important task that 

should be completed in no more than two seconds. 

Earlier studies have shown several approaches to 

islanding detection. The use of an Artificial Neural 

Network (ANN) based on the learning vector 

quantization (LVQ) technique is proposed in this paper 

for fault classification and islanding detection in grid-

connected distributed generators. The method consists of 

discrete wavelet transform (DWT), which extracts some 

features from the fault signal. Then, LVQ is used to 

classify the disturbance and detect islanding events. 

Power, entropy, and total harmonic distortion (THD) are 

used to obtain the total harmonic value. All features 

become inputs for LVQ, and system disturbances, 

lightning, and islanding disturbances are used as LVQ 

outputs. There are 600 datasets consisting of 200 datasets 

for each fault as training data. To test the LVQ training 

results, 120 datasets consisting of 40 datasets for each 

disturbance are used. The training error is made at 0.1 

percent to get good testing results. The test results from 

120 datasets showed that the test data achieved 99.10% 

accuracy. In other words, the test results are very 

effective because there are only 0.9% errors, and there 

are 2 test data that do not match the actual situation. 

 

Keywords: Distributed generation, Learning vector 

quantitation, power, entropy, total harmonic distortion. 

  
Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License.  
 

I. INTRODUCTION 

The increasing use of renewable energy has been 

the main driver behind the recent spike in distributed 

generation (DG) usage. The Minister of Energy and 

Mineral Resources of Indonesia, rule number 26 of 

2021, which addresses grid-connected rooftop solar 

PV, is an example of this [1],[2]. In order to generate 

power from solar energy, this legislation encourages 

the installation of rooftop solar power generation 

installations. Even while this cutting-edge technology 

offers many benefits, incorporating it into the main 

power system is not without its challenges. One 

significant area for improvement is identifying 

islanding situations in which dispersed  generation is 

cut off from the main power grid [3]. Islanding is a 

condition or situation where part of the power grid or 

power generation system becomes isolated and still 

generates its power, separate from the main Grid [4], 

[5]. In an islanding situation, the part continues to 

operate autonomously, even when disconnected from 

the main grid. This can happen when distributed power 

generation (such as solar panels or wind turbines) is 

connected to the main grid but isolated due to a fault 

on the grid. Islanding can be a severe problem as it can 

cause potential danger to operators and cause damage 

to equipment if not detected and addressed quickly [6], 

[7]. Islanding detection is identifying and 

disconnecting the power supply when this condition 

occurs. 

According to the standard proposed by IEEE, 

islanding detection should be done in less than two 

seconds, and the power source should be disconnected 

[8], [9]. Therefore, various methods have been 
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proposed to detect islanding quickly. These methods 

can be grouped into two main categories: remote and 

local. Remote methods include a Power Line 

Signaling Scheme, Signal Produced by Disconnect, 

Transfer Trip Scheme, and Impedance Insertion 

Method. Local methods are grouped into two 

categories, namely, conventional and modern methods 

[10]. Implementing remote islanding detection 

systems comes with a high cost, and using active 

techniques negatively influences power quality and 

adds complexity to the system by requiring additional 

power electronics controllers [11]. Conventional 

methods consist of active, passive, and hybrid methods 

[12]. Modern methods consist of Signal Processing 

and Signal Estimation methods. Among these 

methods, active, passive, and hybrid methods are most 

likely to produce an islanding detection time of less 

than two seconds. 

Several previous studies related to islanding 

detection methods have been published in journals. 

Among them is the use of active methods in islanding 

detection, with the main concept in active islanding 

detection methods being to introduce distortion to the 

voltage wave pattern in the electrical system [13]. 

Islanding detection is also carried out using passive 

methods based on observation and analysis of power 

network characteristics to detect significant changes 

[14], [15]. Islanding can also be detected using a 

hybrid method by identifying islanding events in 

distributed generation (DG) units that use inverters 

[16], [17]. It is known that the islanding detection 

methods that have been used are quite effective for 

detecting islanding. However, these methods still need 

to improve, such as expensive devices, potential power 

degradation, relatively larger NDZ, longer detection 

time, higher complexity, and the fact that they can only 

detect islanding conditions in DG systems connected 

to the grid. 

Not just islanding occurs when DG is connected to 

the grid. Various other disturbances also exist, some 

of which are internal disturbances and external 

disturbances (lightning). Disturbance In general, 

disturbance indicates a condition where something 

deviates from its intended function [18]. In power 

systems, disturbances are usually associated with 

anomalies in the flow of electricity, especially short 

circuits, which occur when the current goes beyond 

normal operating conditions. Faults such as short 

circuits in the power grid system not only lead to 

significant economic losses but also diminish the 

overall efficiency of the power system [19]. An 

electrical fault is an occurrence that stems from 

malfunctions in machinery, including transformers 

and rotating machines, as well as human errors and 

environmental factors. 

This paper proposes an Artificial Neural Network 

(ANN) based on the Learning Vector Quantization 

(LVQ) method for islanding detection. This method 

cannot only detect islanding but can also classify other 

disturbances in the DG system connected to the grid, 

including internal and external system disturbances. 

This method also offers a more comprehensive and 

efficient solution for islanding detection and 

disturbance classification, overcoming many of the 

existing methods' shortcomings and significantly 

improving islanding detection and disturbance 

management in DG systems.  

 

II. METHOD 

A. Wavelet Transform 

Fault detection methods utilizing machine learning are 

frequently amalgamated with wavelet transforms to 

recognize islanding occurrences in power systems. 

Although these approaches prove effective, concerns 

emerge regarding extended detection durations and 

considerable computational requirements, particularly 

in real-time settings. Therefore, adopting a signal 

processing-focused approach that can furnish reliable 

islanding detection without sacrificing processing 

speed becomes imperative. This is critical in power 

system contexts, guaranteeing prompt responses to 

islanding conditions to prevent safety risks and 

potential damage to equipment [20].  

In this formula, 'x' and 'y' denote the scaling and 

translation constants correspondingly, while '(a)' 

signifies the wavelet function. The Discrete Wavelet 

Transform (DWT). 

𝑊𝑇(𝑓, 𝑥, 𝑦) =
1

√𝑥0
𝑚
∑𝑓(𝑘)𝛹 (

𝑛−𝑘𝑥0
𝑚

𝑥0
𝑚 ) 

 (1) 

where k, m the are integers,  
1

√𝑥0
𝑚

  is the basis function, 

and Ψ is the mother wavelet. 

𝑐𝑗(𝑛) = ∑ 𝑓(𝑘)𝛹𝑘 (2𝑛 − 𝑘)  (2) 

 

𝑑𝑗(𝑛) = ∑ 𝑥(𝑘)𝑔∞
𝑚=−∞ (2𝑛 − 𝑘)  (3) 

 

Equations (2) and (3) demonstrate the rough 

estimation and elaborate coefficients. The 

Daubichies’s mother wavelet, “db4,” is employed in 

this research for islanding detection. 

 The Wavelet Transform (WT) proves to be a 

powerful method for breaking down a transient signal 

into a sequence of wavelets, each representing distinct 

frequency components within a given time span. 

Emphasizing specific frequency bands, each wavelet 

mimics a signal in the time domain, offering a more 

comprehensive representation than traditional time or 

frequency analyses. The outcome of the wavelet 

transform yields valuable insights in the time-

frequency domain, facilitating a more profound 

comprehension of the signal's structure and 

characteristics [21].  
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Figure 1.  Three-levels decomposition model of Discrete Wavelet Transform (DWT) 

 

   The Discrete Wavelet Transform (DWT) is a 

powerful signal processing technique that 

simultaneously analyzes a signal's frequency and time 

characteristics [22]. The prevalent use of DWT 

compared to Continuous Wavelet Transform (CWT) 

can be attributed to its heightened computational 

efficiency, effective data compression, simplicity, and 

absence of redundancy [23]. It accomplishes this by 

employing high-pass and low-pass filters to extract 

high-frequency details and low-frequency 

approximations from the signal. This decomposition 

process can be iterated to various levels, providing a 

multi-resolution signal representation. The resulting 

detail and approximation coefficients allow analysts to 

explore fine-grained details and broader trends within 

the signal, making the DWT invaluable for tasks such 

as denoising, feature extraction, and data compression. 

The scheme of decomposing signals based on 

frequency and time can be seen in Figure 1. 

 

B. Learning Vector Quantization (LVQ) Neural 

Network 

Learning Vector Quantization (LVQ) is a training 

technique for aiding neural networks in pattern 

recognition and data classification [24], [25]. It 

imparts supervised learning to the competitive layers 

within the network, enabling them to autonomously 

learn the classification of input vectors [26]. 

Essentially, LVQ enhances the ability of artificial 

neural networks to identify patterns in data and 

improves their information processing capabilities 

[26], [27]. 

 Figure 2 illustrates the LVQ neural network 

architecture, featuring four units in the input layer and 

two neurons in the output layer. The input 

encompasses wavelet power until 5 level, 

approximation, entropy, and total harmonic distortion 

(THD). The hidden layer consists of two neurons: X is 

the learning rate, and W is weighted. 

 

Islanding
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THD

Approxim
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||X-W1||

||X-W2||

F1
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Y_in

Extraced Features (input)
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Output
 

Figure 2. Learning Vector Quantization Architecture 

 

 The classification output comprises islanding (F1) 

and non-islanding (F2), consisting of a system fault 

and lightning. The input data for this research consists 

of simulated fault system data, lightning data, and 

islanding condition data. These fault scenarios were 

simulated using ATP/EMTP software. ATP/EMTP 

stands for Alternative Transients Program / 

Electromagnetic Transients Program [28], [29]. It is a 

software tool for simulating and analyzing power 

systems in the time domain. The program was 

developed by Dr. Scott Meyer and his team in the 

United States and is distributed by the European 

EMTP Users Group. The software is widely used for 

simulating power system transients, including 

lightning strikes, switching operations, and other 

disturbances [30]. Figure 3 illustrates the flowchart of 

the islanding detection and fault classification method. 

As depicted in Figure 3, when islanding conditions and 

other faults occur, the corresponding waveforms are 

captured at the measurement point, in this case, the 

PCC (Point of Common Coupling). Subsequently, 

these waveforms are made symmetrical through a 

symmetrical component transformation operation. 
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The negative waveform resulting from the balanced 

component is decomposed using wavelet 

transformation. 

 
Table 1. LVQ Training Parameters 

Parameters Value 

Number of hidden 

neurons 

30 

Element vector of 

typical class 

percentages 

0.5  0.25  0.25 

Learning rate 0.001 

Learning function learnlv1 

Numbers of Epochs 1000 

 The training data and targets are utilized to train the 

LVQ neural network using LVQ parameters as 

specified in Table 1. Meanwhile, the testing data is 

employed to evaluate the results of the LVQ training. 

 Figure 3 illustrates the flowchart of the islanding 

detection and fault classification method. As depicted 

in Figure 3, when islanding conditions and other faults 

occur, the corresponding waveforms are captured at 

the measurement point, in this case, the PCC (Point of 

Common Coupling). Subsequently, these waveforms 

are made symmetrical through a symmetrical 

component transformation operation. The negative 

waveform resulting from the balanced component is 

decomposed using wavelet transformation. 

 Features, such as energy level and entropy, are 

extracted from the detail components at a specific 

level. Other features, such as total harmonic distortion 

(THD), are also extracted from the disturbance 

waveform. All data is divided into training and testing 

sets with an 80 and 20 percent composition, 

respectively. 

 

Start

Obtained voltage 

signals during different 

islanding and non-

islanding incident

Symmetrical Component

Apply DWT to Negative 

Sequency Signal

Feature extraction

Data Splitting

80% Training

20% Testing

Training Data

Testing 

Data

Set parameter LVQ 

Model Training

Train LVQ Model

Is error        

Save Trained 

LVQ Model

End

Yes

A

A

No

Test Trained LVQ 

Model

Record Testing 

Results
B

B

 
Figure 3. Flowchart of  method 

 

III. RESULTS AND DISCUSSION 
 Figure 4 depicts the simulation circuit of a 
photovoltage connected to the grid with various 
system disturbances, lightning, and islanding. The 
photovoltage has a power of 500 kWp with a local load 
ranging from 2 kWp to 300 kWp, increasing by two 

kWp for each change. The grid load is set at 1.5 MVA 
and 5 MVAr, with the measurement point (PCC) 
placed after the inverter on the photovoltage side. 
Simulation results of disturbances and others can be 
observed in Fig 5(a), 5(b), and 5(c).
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Figure 4. Fault data generated on DG systems connected to the grid 

 
 Figure 5 (a) shows the simulation results of a 
single-phase A-to-ground fault, where the voltage in 
phase A approaches zero while phases B and C 
increase almost twice their original values. In Figure 5 
(b), the simulation results depict the effect of lightning 
on the photovoltage connected to the grid. Figure 5 (b) 
shows that the lightning disturbance generates highly 
transient voltage, reaching almost 250 kV, 75 times 
greater than the initial value. Finally, Figure 5 (c) 
illustrates the simulation results of islanding 
conditions in the photovoltage system connected to the 
grid. It can be observed from Figure 5 (c) that the 
voltage increases after islanding occurs for all three 
phases: A, B, and C. When islanding occurs (when a 
photovoltaic system is disconnected from the main 
power grid), the voltage doesn't always increase; some 
voltages decrease, while others remain stable. This 
depends on the local load from the solar panels (PV). 
It's crucial to ensure that the impact of islanding 
doesn't exceed 2 seconds to maintain system 
reliability. 
 Wavelet energy, entropy, and total harmonic 
distortion of disturbances were extracted and became 
input to the LVQ neural network. There were 600 data 
points involved in this study, of which 480 data points 
were used to train the LVQ network and another 120 
data points to test the trained model. In the context of 
neural networks, training data (comprising 480 data 
points) is used to teach the model by adjusting its 
weights and biases, while testing data (120 data points) 
evaluates the model's performance. Each type of 
disturbance contributed 200 data points, of which 160 
data points were allocated for training and 40 data 
points for testing. The test results of the 40 data points 
are illustrated in Figure 6, which shows that the test 
data obtained an accuracy of 98.33%, corresponding 
to the actual data. These results were validated using 
the confusion matrix, as illustrated in Figure 7. The 
confusion matrix shows 2 mismatched outputs out of 
120 test data points for each fault correctly classified. 
Overall, these findings demonstrate the effectiveness 
of LVQ neural networks in detecting islanding and 
classifying faults in grid-connected DGs with very low 
error values. 

 
(a) 

 
(b) 

 

 
(c) 

Figure 5.  (a) The ATP/EMPT result of phase A to 

ground fault, (b) The ATP/EMPT result of a lightning fault, 

and (c) The ATP/EMPT result of the islanding condition 

 

Through successful training, LVQ can accurately 

classify regular states and different types of 

disturbances. To achieve precise outcomes, it is 

necessary to have a training dataset that encompasses 

diverse electrical system conditions, encompassing 

standard forms and various kinds of faults condition. 
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Figure 6. Result of LVQ classification 

 

 
Figure 7. Validation of test results using the Confusion 

Matrix 

 
 Islanding detection and fault classification are 
critical to ensuring the reliable and safe operation of 
distributed generation (DG) systems connected to the 
grid. Islanding refers to the situation where a portion 
of the DG system continues to generate power 
independently of the main grid during a grid outage. 
Detecting islanding events promptly is essential to 
prevent safety hazards and damage to equipment. 
Linear Vector Quantization (LVQ) is a machine-
learning technique that can be employed for islanding 
detection and fault classification in DG systems. LVQ 
is an artificial neural network that learns to classify 
input patterns based on training examples. This study 
extracted features such as wavelet energy, entropy, 
and total harmonic distortion from disturbances in the 
electrical grid. These features were utilized as inputs 
for the Linear Vector Quantization (LVQ) neural 
network. 600 data points were involved in this study, 
with 480 data points used to train the LVQ network 
and another 120 data points to test the trained model. 
Each type of disturbance contributed 200 data points, 
of which 160 data points were allocated for training 
and 40 data points for testing. The test results of the 40 
data points are illustrated in Figure 6, which shows 
that all the test data matches the actual data. 
Remarkably, the LVQ test showed an accuracy of 
99.10%. These results were validated using a 
confusion matrix, as illustrated in Figure 7. The 
validation confusion matrix shows that there are 
output classes that do not match, i.e., one data point 

that do not match. Overall, these findings demonstrate 
the effectiveness of the LVQ neural network in 
classifying faults in the power grid very well, with an 
accuracy of 99.10% compare to previous journal such 
as [31] with accuracy just 98.9%. 
 Using a laptop equipped with an AMD Ryzen 7 
5800H processor, 16 GB of RAM, and a 64-bit 
Windows 10 operating system, the time required to 
complete the training of this method is approximately 
605 seconds for all simulation data. Meanwhile, the 
time needed to perform islanding determination 
testing using this method is only about 0.82 seconds, 
which is well below the 2-second limit specified in 
IEEE 1547. 
 

IV. CONCLUSION 
 Islanding is a phenomenon in which dispersed 
generation is detached from the grid, which can cause 
danger to equipment and operators at the DG site. 
detection to determine whether it was true islanding or 
another disturbance is necessary. 
 The application of Linear Vector Quantization 
(LVQ) for islanding detection and fault classification 
in grid-connected distributed generation systems has 
proven very effective. This research involves 
developing and applying LVQ algorithms to analyze 
grid disturbances and identify islanding events. 
Simulation results show that the LVQ-based method 
successfully classifies various fault scenarios, 
including short circuits, lightning, and islanding faults. 
This enables timely and accurate responses to mitigate 
potential risks associated with islanding operations. 
Islanding detection and fault classifications are 
essential to ensure the reliable and safe operation of 
grid-connected distributed generation (DG) systems. 
LVQ is a machine learning technique that can be used 
for islanding detection and fault classification in DG 
systems. LVQ is an artificial neural network that 
learns to classify input patterns based on training 
examples. Features extracted from wavelets, such as 
wavelet energy, entropy, and fast Fourier transform, 
extract the total harmonic distortion of disturbances in 
the power grid. These features are used as inputs for 
the LVQ neural network. LVQ testing showed an 
accuracy of 99.10%. These results were validated 
using a confusion matrix. Overall, the findings 
demonstrate the effectiveness of LVQ neural networks 
in accurately classifying faults in power grids. The 
quality of its training significantly influences the 
effectiveness of LVQ. Including a diverse set of 
training data covering various fault and islanding 
conditions enhances the model's capacity to identify 
complex situations. 
 

V. ACKNOWLEDGMENTS 
The authors thanks to the department of electrical 
engineering, Andalas University for the facilities that 
have been provided. 
 
 
 
 



Advanced in Islanding Detection and Fault Classification for Grid-Connected Distributed Generation using Deep Learning Neural 

Network 

8 

VI. REFERENCES

[1] N. Larasati, A. Rahardjo, H. Prameswara, and F. 

Husnayain, "Interconnection Study of a 3 MWp 

Solar Farm on 20 kV Distribution System 

Considering Power Flow and Short Circuit," 

ELKHA, vol. 12, p. 84, 10/11 2020. 

[2] D. A. Alfeus Sunarso, Dovian Iswanda, 

Nurhaidah Nurhaidah, Tri Pratomo, Halasan 

Sihombing, Yunita Yunita, Wendhi Yuniarto, 

Rusman Rusman, "Assessment of Solar Energy 

Resource for PV Plant Development Using a 

Low-Cost PV Monitoring System," ELKHA, vol. 

15, p. 11, 2023. 

[3] C. Reddy and K. Reddy, "Passive Islanding 

Detection Technique for Integrated Distributed 

Generation at Zero Power Balanced Islanding," 

International Journal of Integrated Engineering, 

vol. 11, 09/15 2019. 

[4] R. Ferreira, P. Colorado, A. Grilo Pavani, J. 

Teixeira, and R. Santos, "Method for 

identification of grid operating conditions for 

adaptive overcurrent protection during 

intentional islanding operation," International 

Journal of Electrical Power & Energy Systems, 

vol. 105, pp. 632-641, 09/08 2018. 

[5] M. Khan, A. Haque, V. S. B. Kurukuru, and S. 

Mekhilef, "Islanding detection techniques for 

grid-connected photovoltaic systems-A review," 

Renewable and Sustainable Energy Reviews, vol. 

154, p. 111854, 02/01 2022. 

[6] R. Bakhshi-Jafarabadi, J. Sadeh, A. Serrano-

Fontova, and E. Rakhshani, "Review on 

islanding detection methods for grid-connected 

photovoltaic systems, existing limitations and 

future insights," IET Renewable Power 

Generation, vol. 16, pp. 3406-3421, 2022/11/01 

2022. 

[7] B. K. P. Anshuman Bhuyan, Subhendu Pati, 

"Fault Classification in a DG Connected Power 

System using Artificial Neural Network," 

Indonesian Journal of Electrical Engineering 

and Informatics (IJEEI), vol. 10, p. 10, 2022. 

[8] A. Hussain, C. H. Kim, and A. Mehdi, "A 

Comprehensive Review of Intelligent Islanding 

Schemes and Feature Selection Techniques for 

Distributed Generation System," IEEE Access, 

vol. 9, pp. 146603-146624, 2021. 

[9] M. Abu Sarhan. (2023, An Extensive Review and 

Analysis of Islanding Detection Techniques in 

DG Systems Connected to Power Grids. 

Energies 16(9).  

[10] C. Trujillo, D. Velasco, E. Figueres, and G. 

Garcera, "Local and Remote Techniques for 

Islanding Detection in Distributed Generators," 

ed, 2010. 

[11] S. Raza, H. Mokhlis, H. Arof, J. A. Laghari, and 

L. Wang, "Application of signal processing 

techniques for islanding detection of distributed 

generation in distribution network: A review," 

Energy Conversion and Management, vol. 96, 

05/15 2015. 

[12] N. Larik, M. Tahir, Z. El-Barbary, M. Yousaf, 

and M. A. Khan, "A comprehensive literature 

review of conventional and modern islanding 

detection methods," p. 101007, 11/20 2022. 

[13] L. Yu, D. Zhang, and J. He, "Active islanding 

detection method for multi-inverter in power 

distribution system," in 2017 IEEE Conference 

on Energy Internet and Energy System 

Integration (EI2), 2017, pp. 1-5. 

[14] G. Song, B. Cao, and L. Chang, "A Passive 

Islanding Detection Method for Distribution 

Power Systems With Multiple Inverters," IEEE 

Journal of Emerging and Selected Topics in 

Power Electronics, vol. 10, pp. 5727-5737, 2022. 

[15] W. Bower and M. E. Ropp, "Evaluation of 

Islanding Detection Methods for Utility-

Interactive Inverters in Photovoltaic Systems," 

2002. 

[16] M. Seyedi, S. A. Taher, B. Ganji, and J. 

Guerrero, "A Hybrid Islanding Detection 

Method Based on the Rates of Changes in 

Voltage and Active Power for the Multi-Inverter 

Systems," IEEE Transactions on Smart Grid, 

vol. 12, pp. 2800-2811, 2021. 

[17] M. Mungkin, H. Satria, D. Maizana, M. Isa, S. 

Syafii, and M. Puriza, "Analysis of the feasibility 

of adding a grid-connected hybrid photovoltaic 

system to reduce electrical load," International 

Journal of Power Electronics and Drive Systems 

(IJPEDS), vol. 14, p. 1160, 06/01 2023. 

[18] A. E. Labrador Rivas and T. Abrão, "Faults in 

smart grid systems: Monitoring, detection and 

classification," Electric Power Systems 

Research, vol. 189, p. 106602, 2020/12/01/ 2020. 

[19] A. Bhuyuan, B. Panigrahi, and S. Pati, Fault 

Classification for DG integrated Hybrid Power 

System using Wavelet Neural Network Approach, 

2021. 

[20] A. Yılmaz and G. Bayrak, "A new signal 

processing-based islanding detection method 

using pyramidal algorithm with undecimated 

wavelet transform for distributed generators of 

hydrogen energy," International Journal of 

Hydrogen Energy, vol. 47, pp. 19821-19836, 

2022/05/26/ 2022. 

[21] S. Banerjee and P. S. Bhowmik, "Transient 

Disturbances and Islanding Detection in Micro 

Grid using Discrete Wavelet Transform," in 2020 

IEEE Calcutta Conference (CALCON), 2020, pp. 

396-401. 

[22] D. B. Percival and D. Mondal, "22 - A Wavelet 

Variance Primer," in Handbook of Statistics. vol. 

30, T. Subba Rao, S. Subba Rao, and C. R. Rao, 

Eds., ed: Elsevier, 2012, pp. 623-657. 

[23] H. Laaksonen, "Novel Wavelet Transform based 

Islanding Detection Algorithms," International 



Advanced in Islanding Detection and Fault Classification for Grid-Connected Distributed Generation using Deep Learning Neural 

Network 

9 

Review of Electrical Engineering, vol. 8, 12/01 

2013. 

[24] J. Xiong, S. Tian, C. Yang, B. Yu, and S. Chen, 

"Analog fault feature extraction and 

classification based on LMD and LVQ neural 

network," in 2017 International Conference on 

Algorithms, Methodology, Models and 

Applications in Emerging Technologies 

(ICAMMAET), 2017, pp. 1-6. 

[25] R. Aşlıyan, "Examining Variants of Learning 

Vector Quantizations According to 

Normalization and Initialization of Vector 

PositionsNormalizasyona ve Prototip 

Vektörlerin Başlangıç Değerlerine Göre 

Öğrenmeli Vektör Kuantalama Metotlarının 

İncelenmesi," European Journal of Science and 

Technology, 12/24 2022. 

[26] B. Hammer and T. Villmann, "Generalized 

relevance learning vector quantization," Neural 

Networks, vol. 15, pp. 1059-1068, 2002/10/01/ 

2002. 

[27] K. Zhang, Z. Chen, L. Yang, and Y. Liang, 

"Principal component analysis (PCA) based 

sparrow search algorithm (SSA) for optimal 

learning vector quantized (LVQ) neural network 

for mechanical fault diagnosis of high voltage 

circuit breakers," Energy Reports, vol. 9, pp. 

954-962, 2023/03/01/ 2023. 

[28] E. E. Mombello, G. G. Venerdini, and G. A. D. 

Flórez, "Optimized high-frequency white-box 

transformer model for implementation in ATP-

EMTP," Electric Power Systems Research, vol. 

213, p. 108709, 2022/12/01/ 2022. 

[29] D. Stanchev, "Modeling approaches for 

externally gapped line arrester through ATP-

EMTP model study," in 2020 12th Electrical 

Engineering Faculty Conference (BulEF), 2020, 

pp. 1-4. 

[30] R. Musca, G. Zizzo, and A. Manunza, "Grid-

Following and Grid-Forming MODELS in ATP-

EMTP for Power Systems Simulation," in 2022 

AEIT International Annual Conference (AEIT), 

2022, pp. 1-6. 

[31] K. Pal, A. K. Akella, K. Namrata, and A. 

Bhuyan, "Neural Network-Based Approach for 

Islanding Detection in a PV Grid-Connected 

System," in Soft Computing Applications in 

Modern Power and Energy Systems, Singapore, 

2024, pp. 303-315. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


