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Abstract – The detection of high impedance faults 

(HIFs) plays a crucial role in modern active distribution 

systems to prevent risks like equipment failures, fire 

incidents, and service disruptions, while maintaining a 

stable power supply. HIFs are challenging to detect due 

to their low-magnitude and fluctuating fault currents, 

often falling below the detection thresholds of 

conventional protection mechanisms. This study 

presents an enhanced HIF detection method leveraging 

differential energy indicators derived from positive-

sequence current components during fault events. The 

proposed approach improves fault detection accuracy 

and discriminates HIFs from nonfault transients, 

including load switching, capacitor switching, and 

nonlinear load effects. The method was validated 

through simulations on adapted IEEE-13 and IEEE-34 

bus systems with high distributed generation (DG) 

penetration. Results demonstrated fast response times 

(<48 ms), robustness against noise disturbances (up to 6 

dB SNR), and consistent performance across varying 

sampling rates. Real-time testing using RTDS and 

dSPACE platforms further confirmed the method’s 

feasibility and superior performance. Unlike heuristic 

methods requiring extensive data training, this approach 

reduces computational complexity, making it economical 

and scalable for practical implementation. However, the 

method may exhibit reduced sensitivity under network 

configurations with low DG penetration or during fault 

scenarios involving high-frequency transients not 

characterized in the tested dataset. These limitations 

suggest that further tuning and validation are necessary 

before large-scale deployment. Overall, this advanced 

HIF detection technique offers a promising solution for 

enhancing safety and reliability in modern smart 

distribution networks. 
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I. INTRODUCTION 

High impedance faults (HIFs) in smart distribution 

networks are a persistent challenge that significantly 

impacts the reliability and safety of power delivery 

systems. These faults may occur due to broken phase 

conductors, insulation failures, or unintentional 

contact with high-impedance materials such as 

concrete, grass, or sand. HIFs are difficult to detect 

because they typically generate low-magnitude and 

erratic fault currents, often remaining below the 

detection thresholds of traditional protection 

mechanisms [1][2]. 

Conventional methods, such as impedance-based 

techniques and time-domain analysis, face significant 

limitations in accurately detecting HIFs. These 

methods are not only affected by the nonlinear and 

stochastic nature of HIF currents but also fail to adapt 

to the complexities of smart distribution systems, 

including bidirectional power flows and the 

integration of inverter-based distributed generation 

(DG) sources [3][4]. As a result, undetected faults can 

cause equipment damage, fire risks, and power 

interruptions, making improved detection methods a 

pressing need [5][6]. 

In recent years, artificial intelligence (AI) and 

machine learning (ML) approaches have been 

proposed to address these challenges. While they show 

promising accuracy, their practical deployment is 
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often hindered by the need for large training datasets 

and high computational resources, which are not 

always feasible for real-time applications [15][16]. 

Other signal-based approaches, such as wavelet 

transforms or energy-based methods, have also been 

studied, but their performance under diverse fault 

conditions especially with nonlinear loads and high-

noise environments remains insufficiently validated 

[17][19]. 

This paper proposes an enhanced HIF detection 

method that utilizes differential energy indicators 

derived from positive-sequence current components. 

The method is designed to improve accuracy and 

reliability while maintaining computational efficiency 

for real-time applications. Simulations on IEEE-13 

and IEEE-34 bus systems with high DG penetration 

demonstrate the feasibility of this approach. Real-time 

validation using RTDS and dSPACE platforms further 

confirms its practicality. 

However, despite its promising results, the 

proposed method also has limitations. Its performance 

under network configurations with low DG 

penetration or untested high-frequency transient 

disturbances remains uncertain. Furthermore, field 

deployment may face challenges such as sensor 

calibration accuracy, data acquisition synchronization, 

and the integration of detection algorithms with 

existing protection relays. 

Therefore, the objective of this study is not only to 

demonstrate an accurate and efficient HIF detection 

method but also to highlight the need for further 

investigations into deployment challenges and 

adaptation across various real-world network 

topologies. By addressing both the potential and the 

limitations, this work aims to provide a balanced 

contribution to the advancement of intelligent 

protection systems in modern smart grids. 

II. METHOD 

A. System Overview 

The proposed method aims to improve the detection of 

high-impedance faults (HIF) in intelligent active 

distribution networks. It uses differential energy 

indicators derived from positive-sequence current 

components to distinguish HIFs from other nonfault 

transients. Simulations were conducted on modified 

systems of the bus IEEE-13 and IEEE-34 to validate 

the method under varying operational conditions. 

Figure 1 illustrates the two-bus network used for 

analysis, and Figure 2 details the IEEE-34 bus system 

integrated with distributed generation (DG). 

 

Figure 1. Two-Bus Network for Fault Analysis 

 

 

Figure 2. IEEE-34 Bus System with Distributed Generation 

Integration 

B. Proposed Detection Technique 

Data Acquisition 

Current signals were collected from both ends of the 

feeder using intelligent electronic devices (IEDs). 

These devices enable precise monitoring and data 

collection, essential for fault analysis. 

 

Calculation of Positive Sequence Current Components 

(PSCCs) 

Positive sequence components (𝐼1) were computed 

using the Discrete Fourier Transform (𝐷𝐹𝑇): 

𝐼1 =
1

3
(𝐼𝑎 + 𝑗. 𝐼𝑏 + 𝑗2. 𝐼𝑐)  (1) 

Where 𝐼𝑎 , 𝐼𝑏 , 𝑎𝑛𝑑 𝐼𝑐  are the phase currents, and j is a 

unit phasor representing a 120° phase shift.  

Differential Energy Computation 

The local energy of the current signal  (𝜓[𝑖(𝑛)]) was 

calculated using a nonlinier energy operator:  

𝜓[𝑖(𝑛)] = 𝑖2[𝑛] − 𝑖[𝑛 − 1]. 𝑖[𝑛 + 1] (2) 

Energy values before and after a fault (𝐸1𝑎𝑛𝑑 𝐸2) 

were computed: 
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𝐸1 = 𝜓[∆𝐼𝑝𝑟𝑒(𝑛)],      𝐸2 = 𝜓[∆𝐼𝑝𝑜𝑠𝑡(𝑛)] (3) 

The fault detection indicator (∆𝐸) was derived as: 

|∆𝐸| = |𝐸1 − 𝐸2|  (4) 

Fault Detection Indicator 

A Cumulative Fault Detection Index (CFDI) was 

introduced to accumulate energy deviation patterns 

over time, capturing the dynamics of fault transients 

more reliably: 

𝐶𝐹𝐷𝐼(𝑛) = ∑ |𝐸𝑘 − 𝐸𝑘−1| 𝑁
𝑘=1  (5) 

A trip signal was generated if the CFDI exceeded a 

predefined threshold 𝑇𝐶𝐹𝐷𝐼  , indicating the presence of 

a high impedance fault. 

CFDI Threshold Determination 

The threshold value 𝑇𝐶𝐹𝐷𝐼    is a critical parameter that 

determines the sensitivity and reliability of the 

proposed fault detection system. An inappropriate 

threshold could lead to false positives (e.g., tripping 

during nonfault events like capacitor switching) or 

false negatives (missed fault detection). Therefore, a 

hybrid statistical and empirical approach was used to 

define the optimal threshold, as outlined below:  

1. Statistical Analysis of Nonfault Events: 

CFDI values were computed under various 

nonfault conditions such as load switching, 

capacitor switching, and nonlinear load 

operations. The maximum observed 𝐶𝐹𝐷𝐼 under 

these conditions was recorded as 

𝐶𝐹𝐷𝐼𝑚𝑎𝑥,𝑛𝑜𝑛 𝑓𝑎𝑢𝑙𝑡 .  

2. Initial Threshold Estimation: 

The initial threshold was set as: 

𝑇𝑖𝑛𝑖𝑡 = 𝐶𝐹𝐷𝐼𝑚𝑎𝑥,𝑛𝑜𝑛𝑓𝑎𝑢𝑙𝑡 + 𝛿 

Where  𝛿 is a safety margin (typically 10-15%) to 

prevent nuisance tripping.  

3. Simulation-Based Optimization: 

Multiple simulations were conducted under 

varying fault resistances (100–2000 Ω), noise 

levels (SNR 6–40 dB), and sampling rates (1.2–6 

kHz). The threshold was fine-tuned to maximize 

detection accuracy while minimizing false 

positives using the following performance metric: 

𝐹1 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Where: 

⦁ Precision is the proportion of correctly 

identified faults among all detected, 

⦁ Recall is the proportion of actual faults 

successfully detected. 

4. Final Threshold Selection: 

The threshold that achieved the highest average 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 across all tested condtition was 

selected as 𝑇𝐶𝐹𝐷𝐼,𝑜𝑝𝑡 . This value was then 

implemented in the real-time RTDS-dSPACE 

system and shown to maintain a detection 

accuracy of 96.2% even at 6 dB SNR. 

This threshold optimization process ensured that 

the proposed method remains adaptive to a wide 

range of operating conditions while maintaining 

high reliability in both simulated and real-time 

environments. 

C. Simulation Environment  

This method simulated on IEEE-13 and IEEE-34 bus 

systems, as shown in figure 2, under the following 

scenarios: 

1. Fault types: Single-line-to-ground (SLG), double 

line-to-ground (DGL), and line-to-line (LL). 

2. Fault Resistances: 100 − 2000 Ω 

3. Noise Levels: Signal to noise ratio (SNR) ranging 

from 6 dB to 40 dB as can be seen in figure 4.  

4. Sampling Rates: 1,2 kHz to 6 kHz. 

5. Nonlinear Load Scenarios: Evaluated for harmonic 

distortion impacts as can be seen in figure 3. 

Figure 3. Harmonic Distortion Impacts in Nonlinear Load 

Scenarios 

Figure 4. Signal-to-Noise Ratio (SNR) Levels for Fault 

Scenarios 

 

D. Research Procedure  

The research procedure followed a structured 

workflow, as summarized in Figure 5. The steps are as 

follows: 

1. Model Development: 

IEEE-13 and IEEE-34 bus systems were adapted 

to represent typical smart distribution networks 

with various DG penetrations. 

2. Fault Scenario Design: 

Various fault types (SLG, DLG, LL) and fault 

resistances (100–2000 Ω) were introduced. Noise 

levels (SNR 6–40 dB) and nonlinear load 

conditions were also simulated. 

3. Data Acquisition: 
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Current signals were collected at both ends of the 

feeder using simulated IEDs, enabling accurate 

signal monitoring during transient events. 

4. Signal Processing: 

Positive-sequence current components were 

computed using Discrete Fourier Transform 

(DFT). Differential energy values before and after 

the fault were calculated. 

5. CFDI Computation: 

The Cumulative Fault Detection Index (CFDI) 

was derived, and fault detection was declared 

when CFDI exceeded the optimized threshold. 

6. Threshold Optimization: 

A combination of statistical and simulation-based 

techniques was used to determine the optimal 

CFDI threshold, as detailed in the previous 

section. 

7.    Validation and Performance Evaluation: 

The method was evaluated in both simulation and 

real-time platforms (RTDS and dSPACE), using 

accuracy, precision, recall, and response time as 

performance metrics. 

 

 
Figure 5. Research Procedure Flowchart 

 

Real-Time Validation 

The proposed method was implemented in a real-

time digital simulator (RTDS) environment, interfaced 

with a dSPACE DS1104 controller. Fault signals were 

processed in real-time using MATLAB/Simulink. The 

protection logic's feasibility was validated, achieving 

a response time of 48 ms. 

Performance Metrics 

Performance was evaluated based on: 

1. Accuracy: Correctly identifying HIFs under 

various fault conditions. 

2. Reliability: Minimal false positives during 

nonfault events such as load switching. 

3. Efficiency: Faster response times compared to 

existing methods. 

III. RESULTS AND DISCUSSION 

 A. Fault Detection Accuracy 
The proposed method demonstrated high accuracy 

in detecting high-impedance faults (HIFs) across 
various fault scenarios, such as single line-to-ground 
(SLG), double line-to-ground (DLG), and line-to-line 
(LL) faults. Simulation results on the systems of IEEE-
13 and IEEE-34 bus showed consistent detection 
performance even for faults with resistances ranging 
from 100 to 2000 Ω. 

Table 1 presents the detection accuracy of the 
proposed method under different fault types, including 
single line-to-ground (SLG), double line-to-ground 
(DLG), and line-to-line (LL) faults. The results 
demonstrate consistently high performance, with 
accuracy values exceeding 98% for all scenarios, 
confirming the method’s reliability in identifying 
high-impedance faults across diverse operating 
conditions. 

Table 1. Detection Accuracy Across Different Fault 
Location Methods 

Fault Type Detection Accuracy 
(%) 

Single Line-to-Ground (SLG) 98,9 
Double Line-to-Ground (DLG) 98,5 
Line-to-Line (LL) 98,6 

 
B. Robustness Against Noise 

The method was tested under varying noise levels 
(SNR from 6 to 40 dB) to evaluate its robustness. 
Results showed that the method maintained a detection 
accuracy of 96.2% even under high-noise conditions 
(SNR = 6 dB), as depicted in Figure 4. This robustness 
is attributed to the use of positive-sequence current 
components, which are less affected by noise 
compared to phase currents. 
C. Discrimination of Nonfault Events 
The ability to distinguish HIFs from nonfault 
transients, such as capacitor switching, load switching, 
and nonlinear load effects, was validated. 

Figure 6 demonstrates transient waveforms for 
capacitor and load switching, where the proposed 
method successfully avoided false positives. 
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Figure 6. Transient Waveforms for Capacitor and Load 

Switching 

For nonlinear load conditions, Figure 7 shows the 
computed Cumulative Fault Detection Index (CFDI) 
and its corresponding trip signal, confirming accurate 
fault discrimination. 

 
Figure 7. CFDI and Trip Signal 

4. Response Time, Computational Efficiency, and 
Practical Feasibility 

The proposed method demonstrated superior 

performance in terms of response time, computational 

efficiency, and practical feasibility. Real-time 

implementation using RTDS and dSPACE platforms 

confirmed a rapid response time of 48 ms, equivalent 

to approximately three cycles in a 50 Hz system. As 

shown in Table 2, this response time is significantly 

faster than existing techniques, ensuring timely fault 

isolation and minimizing risks such as equipment 

damage and service interruptions. 
 

Table 2. Response Time Comparison 

Method Response Time (ms) 

Proposed Method 48 

Fuzzy-Based [1] 74 

Adaptive Scheme [6] 69 

Data Fusion Method [5] 83 

 

Based on the results presented in Table 2, the 

proposed method demonstrates significant advantages 

in accuracy, speed, noise robustness, and 

computational efficiency compared to conventional 

methods. These advantages position the proposed 

method as a promising solution for accurate and 

reliable HIF detection in smart distribution networks. 

In addition, the method's computational efficiency 

was validated through RTDS-based simulations. By 

employing differential energy indicators, the method 

reduced computational complexity and eliminated the 

need for extensive data training, making it suitable for 

real-time applications. The practical feasibility of the 

method was further confirmed through simulations 

and real-time validation on IEEE-34 systems with high 

DG penetration. Its simplicity, achieved by leveraging 

positive-sequence current components, ensures 

seamless compatibility with existing infrastructure, 

reducing deployment costs and enabling scalability. 

The proposed method outperformed existing 

techniques in several key areas when compared with 

methods discussed in the references. Unlike the fuzzy-

based fault identification method in [1], which 

requires dynamic tree structures and may struggle with 

high noise levels, the proposed approach consistently 

maintained detection accuracy even under challenging 

SNR conditions. Furthermore, while the adaptive 

protection scheme in [6] demonstrated efficiency for 

multiple fault scenarios, its reliance on inverter-

interfaced DGs introduces complexities not present in 

the simpler implementation of the proposed method. 

Similarly, the data fusion-based fault location 

approach in [5] achieves high accuracy but at the cost 

of increased computational demands, making it less 

suitable for real-time applications. In contrast, the 

proposed method's reliance on differential energy 

indicators ensures computational simplicity and real-

time feasibility, making it a robust and scalable 

solution for modern smart distribution networks. 

 

5. Performance Limitations and Error Analysis 

While the proposed method demonstrates high 

accuracy and robustness in detecting HIFs, it is 

essential to highlight its performance under edge 

conditions and to quantify potential misclassification 

errors. 

 

5.1 Misclassification Analysis 

A confusion matrix was generated based on 300 test 

scenarios (including SLG, DLG, LL, and nonfault 

events such as capacitor switching, load variation, and 

nonlinear loads). The results are summarized in Table 

3. 
Table 3. Confusion Matrix for HIF Detection 

 Predicted HIF Predicted Non-HIF 
Actual HIF 139 6 

Actual Non-

HIF 

4 151 

From this matrix: 

True Positive (TP): 139 

False Negatives (FN): 6 

False Positive (FP): 4 

True Negatives (TN): 151 

Performance Metrics: 

Accuracy: 96,7 % 

Precision: 97,2 % 

Recall (Sensitivity): 95,5 % 

F1-Score: 96,5 % 
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These values confirm that the method reliably 

distinguishes HIFs from non-fault conditions, with 

very few false alarms or missed detections. 

 

5.2. Worst-Case Scenarios 

The method was further evaluated under extreme 

conditions, such as: 

Very low fault current (resistance > 2000 Ω) 

Severe harmonic distortion (THD > 15%) 

Very low SNR (< 6 dB) 

Under these circumstances, the detection accuracy 

dropped slightly to 91.2%, and recall dropped to 

89.0%, as shown in Table 4. 

 
Table 4. Performance Metrics Under Extreme Test 

Conditions 
Condition Accuracy Precision Recall F1-Score 

Rf = 100–
2000 Ω, 

SNR > 6 dB 

96.7% 97.2% 95.9% 96.5% 

Rf > 2000 Ω, 
SNR = 4 dB, 

THD > 15% 

91.2% 93.4% 89.0% 91.1% 

 

These results indicate that while the method is 

robust under typical operating conditions, its 

performance may degrade under very high fault 

resistances and intense distortion. This highlights the 

importance of threshold tuning and suggests future 

work in adaptive threshold schemes or hybrid signal-

feature extraction for such scenarios. 

To highlight the contribution of the proposed 

method, a comparative analysis was performed against 

several representative fault detection approaches from 

existing literature. The fuzzy-based fault identification 

method proposed in [1] demonstrated good fault 

classification capabilities under moderate noise levels, 

but its reliance on dynamic tree structures and fuzzy 

rules resulted in higher response time (74 ms) and 

lower accuracy (93.6%) under high-noise scenarios. In 

contrast, the proposed method consistently maintained 

accuracy above 96.7% and achieved a faster response 

time of 48 ms, as shown in Table 2. 

Similarly, the adaptive protection scheme for 

distributed generation presented in [6] offered high 

flexibility in managing multiple fault types. However, 

it depends heavily on inverter-interfaced DG behavior 

and communication latency, making real-time 

deployment more complex. The proposed method, by 

contrast, requires no external communication or 

adaptive relay coordination and offers computational 

simplicity through direct use of differential energy 

indicators. 

Furthermore, the data fusion approach in [5] 

achieved high detection accuracy by combining 

multiple algorithms, but introduced a significant 

computational burden unsuitable for real-time 

environments. Our method eliminates such 

complexity by leveraging single-stage computation, 

making it ideal for embedded or field-deployed 

systems. 

These comparisons, summarized in Table 5, 

demonstrate that the proposed approach offers a 

balanced trade-off between accuracy, speed, 

robustness, and simplicity, making it well-suited for 

practical applications in modern smart distribution 

networks. 
Table 5. Comparison of Proposed Method with Existing 

Works 
Method Accuracy 

(%) 

Response 

Time (ms) 

Real-Time 

Feasible 

Complexity 

Fuzzy-
Based [1] 

93.6 74 Moderate High 

Adaptive 

Scheme [6] 

95.1 69 Limited Medium-

High 

Data Fusion 

Method [5] 

96.8 83 No Very High 

Proposed 
Method 

96.7 48 Yes Low 

 

IV. CONCLUSION 

 This study proposed an enhanced high-impedance 

fault (HIF) detection method for smart distribution 

networks, leveraging differential energy indicators 

derived from positive-sequence current components. 

The method achieved a high detection accuracy of 

98.7% across various fault types and remained robust 

in noisy environments down to 6 dB SNR. Real-time 

testing with RTDS and dSPACE platforms confirmed 

its suitability for online implementation, offering fast 

response (48 ms) and minimal computational 

overhead. Compared to conventional approaches such 

as fuzzy logic, adaptive schemes, and data fusion, the 

proposed method balances simplicity, speed, and 

reliability. However, several limitations were 

identified that may challenge its widespread 

deployment. The performance degrades under extreme 

fault impedance levels (above 2000 Ω) and low SNR 

conditions, indicating sensitivity to measurement 

noise and parameter tuning. Additionally, the use of 

static thresholding may not adapt well to highly 

dynamic operational environments, such as rapidly 

varying load profiles or unbalanced network 

conditions. These limitations highlight the need for 

adaptive mechanisms and hybrid detection models to 

improve resilience and scalability. Future work will 

focus on addressing these challenges through dynamic 

threshold optimization, integration with real-time 

adaptive algorithms, and extensive field-level 

validation in diverse grid topologies. Despite its 

current constraints, the method presents a promising 

step toward practical and cost-effective HIF detection 

in modern power systems, contributing both 

theoretically and practically to ongoing smart grid 

advancements. 
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