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Abstract – Precision agriculture is one of the modern 

solutions to increase the efficiency and yield of 

agricultural production. This study proposes an 

ensemble model based on ResNet , DenseNet , and 

EfficientNet to detect nutrient deficiencies in lettuce 

plants, especially nitrogen, phosphorus, and potassium. 

This model combines the advantages of deep learning 

architecture with a weighted average ensemble approach 

to produce more accurate and reliable predictions. 

Experiments were conducted on a lettuce plant image 

dataset covering various nutrient deficiency conditions. 

The test results show that the proposed ensemble model 

achieves an accuracy of 1.0000 (100%) , indicating 

excellent performance in identifying nutrient deficiency 

symptoms. The advantage of this model lies in the unique 

combination of features obtained from each constituent 

model, which complement each other in producing the 

final prediction. This study proves the great potential of 

deep learning in supporting precision plant nutrient 

management, with practical applications that have the 

potential to reduce the time and cost of monitoring in the 

field. For further development, it is recommended to test 

this model on a larger and more varied dataset to 

improve generalization to various field conditions. 

 

Keywords : Deep Learning, Ensemble Learning, Resnet, 

Densenet, Efficientnet, Precision Agriculture, Plant 

Nutrient Deficiencies.  

I. INTRODUCTION 

Increasing crop productivity and quality is one of 

the top priorities in the agricultural sector. Nutrient 

deficiencies in plants are often the main obstacle that 

can lead to decreased yields and quality. These 

deficiencies are usually indicated by changes in leaf 

color, shape, or structure that are often difficult to 

detect in the early stages through visual observation. 

Therefore, technology-based automatic detection, 

especially using deep learning methods, is very 

important to help farmers make decisions faster and 

more accurately. 

Lettuce is one of the important commodities 

in the agricultural industry. Plant health, especially the 

fulfillment of nutritional needs, greatly affects the 

harvest. Nutrient deficiencies are often difficult to 

detect early, so a system is needed that is able to 

recognize early signs of nutrient deficiencies to 

prevent a decline in crop quality. Deficiencies of 

essential nutrients such as nitrogen, phosphorus, and 

potassium in lettuce plants, especially in the early 

growth phase, can cause significant visual symptoms. 

These symptoms include leaf discoloration, stunted 

growth, and decreased crop quality. Other studies 

utilize deep learning integrated with the Internet of 

Things (IoT) to detect plant diseases and manage plant 

nutrition efficiently. This model uses IoT sensors to 

collect real-time data from the agricultural 

environment, which is then processed using deep 

learning algorithms to provide recommendations 

regarding plant health and nutritional needs. This 

system not only increases productivity but also 

supports sustainable agriculture by optimizing 

resources [1]. Classification of Rice Plant Diseases 

Based on Leaf Images Using Convolutional Neural 

Networks conducted by Istiqomah, N., & Murinto, M. 

[2] . However, detecting symptoms of nutrient 

deficiencies in plants is often a challenge, especially 

on large agricultural land and is time-consuming and 

expensive when using manual methods. 

One of the latest approaches in nutrient deficiency 

detection is the application of convolutional neural 

networks (CNN). Previous studies have shown that 

CNNs are very effective in image classification and 

segmentation. For example, a study by Ferentinos used 

five CNN architectures, including AlexNet, 

GoogleNet, and VGG, to detect diseases in 25 types of 

plants. The VGG architecture managed to achieve an 

accuracy of up to 99.48%, demonstrating the ability of 

deep learning models to recognize complex visual 

patterns associated with plant conditions [3]. Other 

studies using CNNs have focused on detecting 

macronutrient deficiencies. For example, an approach 

using Inception ResNet-v2 successfully detected 

nutrient deficiencies based on changes in color 

gradients in okra plant leaves. This study combined 

transfer learning and fine-tuning to achieve more 

stable and accurate results [4]. In addition, the 
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application of data augmentation, such as image 

rotation and shift, has proven effective in improving 

model performance despite limited initial data. 

Several studies have been conducted in the field of 

deep learning including Zhao, et al. (2019) Analyzing 

various loss functions for image restoration using 

neural networks, focusing on improving image quality 

[5]. Tan & Le (2019) Describes the EfficientNet 

architecture, which utilizes compound scaling 

techniques to improve model efficiency without 

sacrificing accuracy. This model is the basis for 

various classification and object detection applications 

[6]. Kim et al. (2024), conducted a study showing that 

with proper architecture adjustments and training 

methods, DenseNet can compete with other state-of-

the-art models [7]. Ju et al. (2021), Proposed a new 

pruning method based on the DenseNet architecture 

for image classification. This method introduces the 

concept of “threshold” to connect blocks in different 

ways to reduce memory usage without sacrificing 

accuracy [8]. Zhang et al. (2020), Introduced dense 

shortcuts into the ResNet architecture, combining the 

advantages of ResNet and DenseNet. The study 

showed that this approach achieves comparable 

performance to DenseNet with fewer computational 

resources [9]. Jiang et al. (2021), Using ensemble 

learning to improve the accuracy of deep learning 

models in medical image classification [10]. Zhou et 

al. (2020), Leveraging transfer learning on 

EfficientNet for early detection of plant diseases using 

leaf image datasets [11]. Chen et al. (2019), Applying 

DenseNet to an image prediction system with diverse 

datasets, shows the flexibility of this model [12]. 

Jiang, C et al. (2021), Applying DenseNet to non-

linear regression tasks, replacing convolutional layers 

with fully connected layers. The results show that this 

model outperforms traditional regression models in 

predicting environmental data [13]. Wang et al. 

(2019), Using ResNet for plant image classification 

with a focus on leaf diseases, showed high accuracy on 

local datasets [14]. Li et al. (2020), Applying 

DenseNet model in rice disease detection using 

multispectral image combination [15]. Krešo et al. 

(2019), Proposed an efficient ladder-style DenseNet 

architecture for semantic segmentation of high-

resolution images, which enables training at 

megapixel resolution with standard hardware [16]. 

Abai & Rajmalwar (2019), Built two DenseNet 

models from scratch for Tiny ImageNet classification, 

focusing on designing an architecture that fits the 

image resolution of the dataset [17]. Huang et al. 

(2020), Introduced Dense Convolutional Network 

(DenseNet) that connects each layer to all other layers 

in a feed-forward manner, improving parameter 

efficiency and addressing the vanishing-gradient 

problem [18]. Ju et al. (2021), Proposed a novel 

pruning method based on DenseNet architecture for 

image classification, which reduces memory usage 

without sacrificing accuracy [19]. Zhang et al. (2020), 

Introduced dense shortcuts into ResNet architecture, 

combining the advantages of ResNet and DenseNet to 

improve image classification performance [20]. Zhang 

et al. (2020), Research integrating environmental data 

with deep learning models to improve detection of 

nutrient deficiencies in plants [21]. Jiang et al. (2021), 

Applying DenseNet to non-linear regression tasks, 

replacing convolutional layers with fully connected 

layers, and showing superiority over traditional 

regression models in predicting environmental data 

[22]. Simarmata et al. (2022) , Implementing the 

DenseNet architecture for organic and non-organic 

waste classification, with the aim of increasing 

accuracy in grouping waste types [23]. Susanto et al. 

(2021), Conducting a comparative study of Javanese 

script classification using various deep neural network 

architectures, including GoogleNet, DenseNet, 

ResNet, VGG16, and VGG19, to determine the most 

effective model [24]. Yu et al. (2021), Research 

developing an ensemble method with a combination of 

DenseNet and EfficientNet for classification of 

deficiency symptoms in plants [25]. Li et al. (2022), 

Analyzing the effectiveness of weighting average-

based ensemble learning on various plant image 

detection tasks [26]. Dosovitskiy et al. (2021), 

Developing Vision Transformer (ViT), a model that 

can be an alternative to CNN in plant image 

classification tasks [27]. 

In recent decades, Deep Learning-based methods 

have shown great potential for visual data analysis in 

agriculture. However, a single model often has 

limitations in accuracy and generalization. Therefore, 

this study proposes an optimized CNN-based system 

to automatically detect nutrient deficiencies in lettuce 

using a weighting average-based ensemble deep 

learning method to improve the accuracy of early 

detection of nutrient deficiencies in lettuce. 

Compared with traditional methods that rely on 

manual chemical or visual analysis, this approach 

offers better time and cost efficiency. The proposed 

model also includes various optimization techniques, 

such as selecting the best CNN architecture and 

hyperparameter tuning, to ensure a high level of 

accuracy on the test data. 

The study focuses on lettuce crop image 

processing, using three popular CNN architectures 

(ResNet, EfficientNet, DenseNet) combined to 

improve prediction. The success of this study not only 

makes a significant contribution to the agricultural 

sector, but also enriches the literature on the 

application of deep learning in agriculture. With the 

increasing availability of low-cost hardware and high-

quality crop image datasets, this study can have a long-

term impact on smart agriculture in the future. This 

study presents a new approach in early detection of 

nutrient deficiencies in lettuce plants by applying the 

Ensemble Deep Learning method based on Weighting 

Average, which combines ResNet, EfficientNet, and 

DenseNet. Some of the novel aspects of this study 

include: 
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1. Different from previous studies that used 

individual models such as standard CNN or ResNet 

separately, this study applies ensemble learning, 

where the outputs of ResNet, EfficientNet, and 

DenseNet are combined with a weighting average 

strategy to improve detection accuracy. 

2. This method allows the model to combine the 

advantages of each architecture, thereby providing 

more robust and accurate predictions. 

3. This study explicitly combines three popular deep 

learning models and evaluates their performance in 

detecting nutrient deficiency symptoms in lettuce, 

which is still rare in the smart agriculture domain. 

4. Unlike conventional ensemble learning that uses 

majority voting or stacking, this study applies 

weighting average to combine predictions from 

each model. 

II. METHOD 

The model used in this study is a combination of three 

popular deep learning architectures, namely ResNet, 

EfficientNet, and DenseNet, implemented in a 

weighting average-based ensemble learning 

framework. Each model functions as an individual 

learner in detecting nutrient deficiencies in lettuce 

plants based on image data. This ensemble 

architecture consists of three main stages: 

1. Feature Extraction: All three architectures (ResNet, 

EfficientNet, and DenseNet) are used to extract key 

features from the input data (lettuce leaf images). 

2. Feature Combination: The output of each model is 

passed to a fully connected (FC) linear layer to 

produce individual prediction outputs. 

3. Output Consolidation: Predictions from each learner 

are combined using the weighting average method 

to produce the final output in the form of a predicted 

level of nutritional deficiency. 

A. ResNet Architecture 

 ResNet (Residual Neural Network) is a deep 

learning network architecture that uses residual 

blocks to solve the vanishing gradient problem . In 

this study, ResNet50 is used, which consists of: 

1. Total Layers: 50 layers. 

2. Residual Block Structure: Consists of shortcut 

connections to skip several layers, thus allowing 

gradient information to be better passed on. 

3. Convolutional Layer (Conv2D): Kernel size 3x3 

or 1x1 

4. Batch Normalization: To normalize the output of 

each layer. 

5. Activation Function: ReLU (Rectified Linear 

Unit) 

6. Global Average Pooling: To reduce the feature 

dimension before passing to FC. 
B. EfficientNet Architecture 

EfficientNet is designed with a balanced scaling 

approach in three dimensions (depth, width, and 

resolution). This model is lighter and more efficient 

than other models. In this study, EfficientNet-B3 is 

used with the following details: 

1. Total Layers: 30+ layers (depending on scaling 

version). 

2. Mobile Inverted Bottleneck Conv (MBConv): 

Uses Depthwise Separable Convolution for 

efficiency. 

3. Swish Activation: A non-linear activation 

function that improves accuracy. 

4. Squeeze-and-Excitation Blocks: Highlight more 

relevant features in the input. 

C. DenseNet Architecture 

DenseNet (Densely Connected Convolutional 

Network) has a unique approach, namely each layer 

is directly connected to all subsequent layers. This 

results in better gradient propagation and more 

optimal feature utilization. In this study, 

DenseNet121 was used: 

1. Total Layers: 121 layers. 

2. Dense Block Structure: Consists of several 

interconnected convolutional layers. 

3. Convolutional Layer: Kernel size 3x3 and 1x1. 

4. Transition Layer: Reduces dimensionality using 

1x1 convolution and pooling. 

5. Activation Function: ReLU. 

D. Parameter 

1. Train/Test/Validation : 80/10/10 

2. Batch size   : 32 

3. Optimizer   : Adam 

4. Learning rate   : 0.001 

5. Loss function  : CrossEntropyLoss 

  
Figure 1. Architectural Model 

 

E. Research Flow 

 This research begins with the stage of collecting 

data relevant to the research objectives. The data used 

includes image datasets that have certain 

characteristics, such as images of plants showing 

symptoms of nutrient deficiency. After the data is 

collected, pre-processing processes are carried out, 

such as normalization and resizing to ensure the data 

is ready to be used in the machine learning model. The 

next stage is model design and development. This 

research utilizes an ensemble learning model 

architecture that combines several well-known 

convolutional networks, namely ResNet, DenseNet, 
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and EfficientNet. Each model is designed to contribute 

to improving the accuracy and stability of predictions. 

After the model is designed, training is carried out 

using previously processed training data. The model is 

then tested using test data to evaluate performance. 

 

 

 

 

 

 

 

 

Figure 2. Research Flow 

explains the research flow which consists of several 

stages as follows: 

1. Preprocessing 

The dataset is collected and goes through a 

preprocessing stage. The preprocessing process 

includes transformation, resizing, and 

normalization to ensure the data is ready to use. 

The dataset is then divided into three parts: train 

, test , and validation for the model training 

process. 

2. Training 

The models used in this study are Deep Learning 

architectures, namely DenseNet, ResNet, and 

EfficientNet. The processed dataset is used to 

train the model with various optimization and 

parameterization techniques. The model is 

trained using train data and validated using 

validation data to ensure good generalization. 

3. Testing 

The trained model is then tested using test data 

to evaluate its performance. Model evaluation is 

done based on relevant metrics. The test results 

are used to determine the effectiveness of the 

model in performing the prediction task. 

F. Dataset 

The data used in this study is a dataset of lettuce 

leaf images showing symptoms of nutrient deficiency. 

This dataset was obtained from two main sources. 

First, lettuce leaf images were collected from 

Roboflow with a total of 496 data. Second, the dataset 

was obtained from Kaggle with a total of 1237 data. 

This dataset consists of 4 classes of nutrient deficiency 

symptoms, namely sodium, phosphorus, and 

potassium (NPK) deficiency factors. The total dataset 

used is 1,733 images. This dataset contains lettuce leaf 

images with various conditions, especially related to 

macronutrient deficiencies, namely sodium (Na), 

phosphorus (P), and potassium (K), which play an 

important role in plant growth. The dataset has the 

following characteristics: 

1. Sodium (Na) Deficiency 

Sodium is needed in small amounts to help the 

plant metabolize. Symptoms of sodium deficiency 

in lettuce include slow growth, small leaves, and 

leaves that are paler than normal. Images in the 

dataset show changes in leaf color, especially 

yellowing at the edges. 

2. Phosphorus (P) Deficiency 

Phosphorus is essential for root growth, flower 

development, and energy production in cells. 
Phosphorus deficiency causes lettuce leaves to 

become darker, sometimes purplish, with more 

plant growth slow. Some images in the dataset 

show symptoms of necrosis (tissue death) on the 

lower leaves as an indication of phosphorus 

deficiency. 

3. Potassium (K) Deficiency 

Potassium helps regulate water balance, 

photosynthesis, and disease resistance. Lettuce 

plants that are deficient in potassium show 

symptoms such as yellowing or drying of leaf tips, 

and brown spots on leaf edges. The dataset 

contains images with typical characteristics of 

curled, dry, or burnt leaves due to potassium 

deficiency. 

Table 1. Dataset 

Name Source Number of 

images 

Lettuce 

Multiclass 

Roboflow 496 

Lettuce Kaggle 1237 

 

III. RESULTS AND DISCUSSION 
 In this section, the results of the experiments 
conducted to build prediction models using the 
ResNet18, DenseNet121, and EfficientNet_B0 
architectures will be explained in detail. The analysis 
includes evaluating model performance based on loss 
and validation accuracy during the training process, 
which is reflected in the training data at each epoch. 
This assessment is carried out to identify the strengths 
and weaknesses of each architecture in recognizing 
patterns in the dataset used. The discussion begins by 
comparing the training results of the three 
architectures, including the trend of decreasing loss, 
stability of validation accuracy, and learning 
efficiency. Furthermore, an evaluation is carried out 
on factors that affect performance, such as model 
complexity, number of parameters, and generalization 
stability. 
A. ResNet18 
 Loss Trend: Loss decreased significantly from 
0.7584 in the first epoch to 0.0075 in the last epoch. 
This shows that the model learned well during the 
training process. 
 Validation Accuracy: Validation accuracy starts 
from 38.46% in the first epoch to 100% in the sixth 
epoch and so on. This consistency shows that the 
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model has learned the data pattern perfectly, indicating 
no overfitting.  

B. DenseNet121 
 Loss Trend: DenseNet121 has a good loss trend, 
starting from 0.6366 and decreasing to 0.0341 at the 
10th epoch. However, the loss value is higher than 
ResNet18. 
 Validation Accuracy: The initial validation 
accuracy was quite high, at 92.31%, but showed 
fluctuations across several epochs, such as dropping to 
78.85% in the ninth epoch, before increasing again to 
94.23% in the 10th epoch. 

C. EfficientNet 
 Loss Trend: This model has an initial loss value of 
0.8490, decreasing drastically to 0.0155 at the end of 
training. The efficiency of the loss reduction indicates 
the strong generalization ability of the model. 
 Validation Accuracy: Starting from 94.23% in the 
first epoch, then increasing to 100% in the second 
epoch, and stable at that number until the 10th epoch. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3. Training Process 

D. Model Performance 

Results and discussion are the sections that serve to 

interpret empirical data obtained from the 

experimental process. The data is analyzed to explain 

how the tested models, in this case ResNet18, 

DenseNet121, and EfficientNet-B0, perform in the 

classification process. The focus of the analysis is not 

only on accuracy and loss during training but also on 

how these models can complete tasks with high 

efficiency based on their respective architectures. 

Emphasis is also given to trends emerging from the 

graphical and tabular data to gain insight into the 

effectiveness of the models. 

 
Figure 4. Resnet Performance 

 

Figure 4 shows the performance of ResNet18 

during training and validation over 10 epochs. 

Training Loss (blue line) shows how well the model is 

able to predict the training data, while Validation 

Accuracy (orange line) shows the model’s accuracy on 

previously unseen validation data. Decrease in 

Training Loss: The training loss drops sharply during 

the first 2-3 epochs, indicating that the model is rapidly 

learning from the training data. After that, the decline 

stabilizes to near zero, indicating that the model has 

learned the pattern very well. Increase in Validation 

Accuracy: The validation accuracy increases 

significantly during the first 3-4 epochs, reaching a 

value close to its maximum. After that, the accuracy 

stabilizes at around 1.0, indicating that the model has 

good generalization on the validation data. Trend Fit: 

The pattern of steadily decreasing loss along with 

stable accuracy indicates that the model has 

successfully avoided overfitting, which is often a 

problem in deep learning models. 

 

Figure 5. DenseNet Performance 

Figure 5 shows the performance graph of the 

DenseNet121 model during the training process for 10 

epochs, illustrating the Training Loss (blue line) and 

Validation Accuracy (orange line). The loss on the 

training data consistently decreases from the first to 

the last epoch, indicating that the model is learning 

from the data well and correcting its errors. A 

significant decrease in training loss occurs at the 

beginning (epochs 1 to 3), after which the loss 
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decreases more slowly, indicating a convergence 

process. Validation accuracy shows fluctuations 

between epochs 2 and 8, but overall remains high 

(above 80%). The increase in validation accuracy is 

seen at the beginning, although there are some small 

drops at certain points, which may be due to the 

variability of the validation data. At the end of training 

(epoch 10), the validation accuracy increases again to 

near its maximum value, indicating that the model can 

produce fairly good predictions on data that was not 

seen during training. 

 

Figure 6. EfficientNet Performance 

 
Figure 6. EfficientNet Performance shows the 

performance of the EfficientNet B0 model, which 
illustrates the relationship between Training Loss and 
Validation Accuracy over 10 training epochs. It can be 
seen that the loss value decreases significantly since 
the first epoch and continues to decrease until it 
approaches zero in the final epoch. This indicates that 
the model learns well from the training data, and the 
error generated by the model on the training data 
becomes very small over time. The validation 
accuracy value is stable in the range of 0.9 to 1.0, 
indicating that the model has very good performance 
for the validation data. This is also an indication that 
the model does not experience significant overfitting, 
because the validation performance remains high 
throughout the training process. The steady decrease 
in training loss and the stability of validation accuracy 
indicate efficient optimization and well-calibrated 
model parameters. 
E. Ensemble Model Accuracy 
 After testing the Ensemble Learning model that 
combines ResNet, DenseNet, and EfficientNet 
architectures, the model showed excellent 
performance with a test accuracy reaching 100% 
(1.0000). This means that the model successfully 
predicted all test samples correctly, without any errors. 
An accuracy of 1.0000 indicates that the model has 
optimally learned the pattern of the dataset so that all 
data in the test set can be classified correctly. This 
accuracy reflects the strength of the ensemble method 
that combines the advantages of three advanced 
architectures in deep learning to produce more 
accurate and stable predictions. These results 
demonstrate the success of the ensemble model 
designed in this study. The combination of ResNet, 

DenseNet, and EfficientNet architectures successfully 
created a prediction system with optimal performance. 
With a test accuracy of 100%, this model provides 
strong evidence of the effectiveness of the ensemble 
approach to detect nutrient deficiencies in lettuce 
plants automatically and accurately. 

F. Model Analysis 

In this study, experiments were conducted using 

several deep learning architectures, namely ResNet18, 

DenseNet121, and one additional model for lettuce 

leaf condition classification. Evaluations were 

conducted based on loss function metrics and 

validation accuracy, and analyzed to see the 

performance of the model in learning data patterns. To 

provide a broader picture of the advantages and 

disadvantages of the model used, the experimental 

results were compared with several previous studies 

that had a similar focus in image-based plant 

classification, namely: 

1. Istiqomah & Murinto (2024) – using CNN for 

rice plant disease classification based on leaf 

images. 

2. Wulandhari et al. (2019) – applied Deep CNN to 

detect nutrient deficiencies in plants. 

3.  Jiang et al. (2021) – using CNN with data 

augmentation for stress classification in plants. 

The following are the comparison results based on 

several main aspects, including loss function trends, 

validation accuracy, indications of overfitting, and the 

strengths and weaknesses of the models used. 

1. Our Research 

a. Dataset : 1733 lettuce leaf images 

b. Models: ResNet18, DenseNet121 

c. Loss Function Trend : - ResNet18: 

Significantly decreased from 0.7584 → 0.0075 

in the last epoch. DenseNet121: Decrease from 

0.6366 → 0.0341 with little fluctuation. 3rd 

model: Decrease from 0.8490 → 0.0155 with 

high efficiency. 

d. Validation Accuracy : ResNet18: Increased 

from 38.46% → 100% at 6th epoch. 

DenseNet121: Fluctuates, from 92.31% → 

78.85% → 94.23%.3rd model: Reaches 100% 

on the 2nd epoch and remains stable. 

e. Overfitting Analysis : ResNet18 & 3rd Model 

shows no indication of overfitting as loss drops 

significantly and accuracy is stable. 

DenseNet121 experienced slight fluctuations in 

validation accuracy. 

f. Model Advantages: ResNet18 and the 3rd 

model are very stable and quickly achieve high 

accuracy. DenseNet121 has fluctuations, but 

still achieves high accuracy. 

g. Model Weaknesses: DenseNet121 has 

accuracy fluctuations, indicating a possible 

lack of stability under some conditions. 

2. Istiqomah & Murinto (2024) 

a. Dataset: Rice leaf image dataset with various 

disease conditions 

b. Model : CNN 
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c. Loss Function Trend: Not specifically 

mentioned, but the CNN model shows good 

convergence in rice disease classification. 

d. Validation Accuracy: CNN accuracy reached 

97.89% in classifying rice diseases. 

e. Overfitting Analysis : It is not explicitly stated 

whether overfitting occurred or not. 

f. Model Advantages: The CNN model is quite 

accurate in classifying rice diseases. 

g. Model Weaknesses: The model may have 

difficulty generalizing to different lighting 

conditions. 

3. Wulandhari et al. (2019) 

a. Dataset: Images of plants with nutrient 

deficiencies 

b. Model: Deep Convolutional Neural Network 

(CNN) 

c. Loss Function Trend: No details of the loss 

function are mentioned, but CNN is reported to 

show high accuracy in classifying nutrient 

deficiencies. 

d. Validation Accuracy: CNN accuracy is around 

94.5%, but can be improved with data 

augmentation. 

e. Overfitting Analysis : Some models experience 

overfitting if data augmentation is not used. 

f. Model Advantages: CNN is quite powerful for 

nutrient deficiency classification but requires 

more data. 

g. Model Weaknesses: Models tend to be less than 

optimal if not given sufficient data 

augmentation. 

h. Jiang et al. (2021) 
i. Dataset: Images of plants under various 

environmental stress conditions such as high 

temperature, low temperature, excess humidity 

and drought. 

j. Model: CNN with data augmentation 

k. Loss Function Trend : Using Cross-Entropy 

Loss, shows a steady decline with the 

optimized model. 

l. Validation Accuracy: CNN accuracy increases 

to 98.2% with data augmentation and 

hyperparameter fine-tuning. 

m.Overfitting Analysis: Using regularization 

techniques such as dropout to address 

overfitting. 

n. Model Advantages: CNN with data 

augmentation provides the best accuracy in 

plant stress classification. 

o. Model Weaknesses: The model can have 

difficulty distinguishing between similar stress 

types without proper preprocessing. 
 

IV. CONCLUSION 

 Based on the experiments that have been 

conducted, the ensemble models based on ResNet, 

DenseNet, and EfficientNet showed very good results 

in detecting nutrient deficiencies in lettuce plants. The 

accuracy value of the test results of 1.0000 (100%) 

indicates that this model is able to predict with a 

perfect level of accuracy on the test data. The 

achievement of this accuracy can be explained as 

follows : Combining the advantages of ResNet 

(efficiency in handling gradients), DenseNet (rich 

connections between layers), and EfficientNet 

(parameter efficiency with high performance) is able 

to provide strong generalization capabilities to test 

data. The aggregation strategy using weighted 

averages helps produce more stable and reliable final 

predictions, reducing bias from individual models. A 

well-processed dataset allows the model to accurately 

understand the pattern of nutrient deficiency 

symptoms in plants. These results indicate that the 

ensemble model approach can be an effective solution 

for applications in precision agriculture, especially for 

detecting symptoms of nutrient deficiency. This model 

has the potential to be used practically to improve the 

efficiency of monitoring and managing plant nutrients. 

This study shows that the combination of deep 

learning and ensemble learning can make a significant 

contribution to the development of artificial 

intelligence-based technology in precision agriculture. 
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