Kendali Kecepatan Switched Reluctance Motor Berbasis FPGA
Abstract
Abstract-- Renewable drive technology is developing in the current era, one of which is electric transportation. The Switched Reluctance Motor (SRM) was chosen for the transportation development because it has many advantages, including not using permanent magnets and simple construction in the form of an iron core in the rotor and stator windings. SRM works based on the reluctance phenomenon, namely, if the stator is energized, the stator will attract the nearby rotor, this is based on the tendency of the rotor poles to align with the stator excitation poles. SRM requires high speed switching control to operate and requires correct rotor position to operate. Maximum switching and good accuracy can use Field-Programmable Gate Array (FPGA) and rotary encoder as input for rotor position information. To use SRM in electric transport, it is necessary to adjust the speed with ease and precision. With the Pulse Width Modulation (PWM) technique, the size of the excitation depends on the size of the current, the size of the current is determined by the input voltage to the SRM. In this control, the PWM width can be changed by setting the carrier set and modulation set in the FPGA program. In this study, it is proposed to control the SRM speed by adjusting the PWM of the rotary encoder to produce the desired RPM. To support the achievement of this research, hardware testing was carried out in the laboratory.
Keywords-- Duty cycle, FPGA, PWM, Reluctance, Switched Reluctance Motor.
Keywords
Full Text:
PDFReferences
H. Cheng, Z. Wang, S. Yang, J. Huang, and X. Ge, “An Integrated SRM Powertrain Topology for Plug-In Hybrid Electric Vehicles with Multiple Driving and Onboard Charging Capabilities,†IEEE Trans. Transp. Electrif., vol. 6, no. 2, pp. 578–591, 2020, doi: 10.1109/TTE.2020.2987167.
C. Gan, J. Wu, Q. Sun, W. Kong, H. Li, and Y. Hu, “A Review on Machine Topologies and Control Techniques for Low-Noise Switched Reluctance Motors in Electric Vehicle Applications,†IEEE Access, vol. 6, no. c, pp. 31430–31443, 2018, doi: 10.1109/ACCESS.2018.2837111.
Q. A. Al-Haija, M. Al-Ja’Fari, and M. Smadi, “A comparative study up to 1024 bit Euclid’s GCD algorithm FPGA implementation and synthesizing,†Int. Conf. Electron. Devices, Syst. Appl., 2017, doi: 10.1109/ICEDSA.2016.7818535.
Y. Lan et al., “Switched reluctance motors and drive systems for electric vehicle powertrains: State of the art analysis and future trends,†Energies, vol. 14, no. 8, 2021, doi: 10.3390/en14082079.
A. D. Wardani, S. Riyadi, L. H. Pratomo, and F. B. Setiawan, “Peningkatan Efisiensi Kinerja Switched Reluctance Motor dengan Metode Pergeseran Sudut Fasa,†Teknik, vol. 42, no. 1, pp. 253–259, 2021, doi: 10.14710/teknik.v42i3.33970.
A. P. Khedkar and P. S. Swami, “Comparative study of asymmetric bridge and split AC supply converter for switched reluctance motor,†6th Int. Conf. Comput. Power, Energy, Inf. Commun. ICCPEIC 2017, vol. 2018-Janua, pp. 522–526, 2018, doi: 10.1109/ICCPEIC.2017.8290421.
S. Riyadi, “A simple method to control the excitation angle for switched reluctance motor,†Indones. J. Electr. Eng. Informatics, vol. 9, no. 2, pp. 384–393, 2021, doi: 10.52549/ijeei.v9i2.2814.
G. D. Wahyu and S. Riyadi, “PWM Control Strategy of Regenerative Braking to Maximize the Charging Current into the Battery in SRM Drive,†Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, pp. 523–527, 2019, doi: 10.1109/ISEMANTIC.2019.8884342.
S. Riyadi, “Control strategy for switched reluctance motor with rotary encoder based rotor position detection,†Adv. Electr. Electron. Eng., vol. 16, no. 3, pp. 261–270, 2018, doi: 10.15598/aeee.v16i3.2545.
Shihab, B. M., Che, H. S., & Hew, W. P. Symmetrical six-phase PWM methods using similar and dissimilar zero-sequence signals injection. 4th IET Clean Energy and Technology Conference (CEAT 2016) . doi:10.1049/cp.2016.1335
X. Zan, Z. Jiang, K. Ni, W. Zhang, Y. Gong, and N. Wu, “Modular battery management for SRM drives in hybrid vehicles based on a novel modular converter,†IEEE Access, vol. 8, pp. 136296–136306, 2020, doi: 10.1109/ACCESS.2020.3011451.
M. Kulon, K. Majalengka, K. Majalengka, and J. Barat, “Analisis pengaruh dutycycle dan frekuensi terhadap kecepatan motor listrik,†no. 103, 2020.
R. A. Nugroho, “Perbandingan Penyalaan Sudut Fasa Pada SRG Guna Meningkatkan Kinerja Untuk Memaksimalkan Keluaran Daya,†Cyclotron, vol. 4, no. 2, pp. 13–17, 2021, doi: 10.30651/cl.v4i2.7451.
R. AMALIA, S. RIYADI, F. B. SETIAWAN, and L. H. PRATOMO, “Peningkatan Kinerja Switched Reluctance Generator dengan Pergeseran Sudut Penyalaan,†ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 9, no. 3, p. 690, 2021, doi: 10.26760/elkomika.v9i3.690.
N. Kusumaningrum, S. Riyadi, L. H. Pratomo, and F. B. Setyawan, “Optimalisasi Pengereman Regeneratif dengan Perubahan Sudut Eksitasi pada Pulsa Tunggal,†J. Tek. Elektro, vol. 13, no. 1, pp. 1–9, 2021, doi: 10.15294/jte.v13i1.28600.
DOI: https://doi.org/10.33387/protk.v9i1.4317
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Editorial Office :
Address: Jusuf Abdulrahman 53 Gambesi, Ternate City, Indonesia.
Email: protek@unkhair.ac.id, WhatsApp: +6282292852552