Face Recognition Using Local Binary Patterns Histogram Method Using Raspberry PI

Budi Cahyo Wibowo, Imam Abdul Rozaq, Andre Maulana Yusva

Abstract


Throughout his life, humans have the ability to recognize tens to hundreds of faces. One of the biometric techniques that relate body measurements and calculations that are directly related to human characteristics is a system that can detect and identify faces. To be able to overcome various current problems, facial recognition is required through computer applications, including identification of criminals, development of security systems, image and film processing, and human-computer interaction. So the author makes a face processing system based on Raspberry Pi with the Local Binary Patterns Histogram (LBPH) method. In running a facial recognition system using a face, at the initial stage the process of sampling the face of the person who is the owner of the room access is carried out. Then from the face samples that have been obtained, the learning process is carried out by converting the image into digital values through the Local Binary Patterns Histogram method. This method reduces image data into simpler data, to speed up the face recognition process. The results of the test show that face recognition works as expected, even being able to detect at low light brightness values (≥6 lux) and even face recognition accuracy of 79.15%. For face data that has been through the learning process, the face can be recognized, then the recognized face data is stored in a directory.

Full Text:

PDF

References


C. Lesmana, R. Lim, and L. W. Santoso, “Implementasi Face Recognition menggunakan Raspberry pi untuk akses Ruangan Pribadi,” J. Infra Petra, vol. 7, no. 1, pp. 2–5, 2019, [Online]. Available: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/8046.

Munawir, L. Fitria, and M. Hermansyah, “Implementasi Face Recognition pada Absensi Kehadiran Mahasiswa Menggunakan Metode Haar Cascade Classifier,” InfoTekJar J. Nas. Inform. dan Teknol. Jar., vol. 5, no. 1, pp. 314–320, 2020, [Online]. Available: https://jurnal.uisu.ac.id/index.php/infotekjar/article/view/2333/pdf.

D. Yulianti, I. Triastomoro, and S. Sa’idah, “Identifikasi Pengenalan Wajah Untuk Sistem Presensi Menggunakan Metode Knn (K-Nearest Neighbor),” J. Tek. Inf. dan Komput., vol. 5, no. 1, pp. 1–10, 2022, doi: 10.37600/tekinkom.v5i1.477.

I. D. Wijaya, U. Nurhasan, and M. A. Barata, “Implementasi Raspberry PI Untuk Rancang bangun Sistem Keamanan Pintu Ruang Server Dengan Pengenalan Wajah,” J. Inform. Polinema, vol. 4, pp. 9–16, 2017.

M. I. Maulana, M. Nishom, and D. I. Af’idah, “Pengolahan Citra untuk Identifikasi Pelat Nomor Kendaraan Mobil Menggunakan Metode Haar Cascade dan Optical Character Recognition,” J. Bumigora Inf. Technol., vol. 4, no. 1, pp. 1–16, 2022, doi: 10.30812/bite.v4i1.1952.

Ikhwan Alfath Nurul Fathony, “Sistem Kamera Pengawas Dengan Menggunakan Raspberry Pi Disertai Motion Detection Dan Auto Backup Cloud (Google Drive),” Universitas Islam Indonesia, 2018.

M. I. KURNIAWAN, U. SUNARYA, and R. TULLOH, “Internet of Things : Sistem Keamanan Rumah berbasis Raspberry Pi dan Telegram Messenger,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 6, no. 1, p. 1, 2018, doi: 10.26760/elkomika.v6i1.1.

D. Suprianto, R. N. Hasanah, and P. B. Santosa, “Sistem Pengenalan Wajah Secara Real-Time dengan Adaboost, Eigenface PCA & MySQL,” J. EECCIS, vol. 7, no. 2, pp. 179–184, 2013.

T. F. Abidin, A. A. AzZuhri, and F. Arnia, “Pengenalan Karakter Plat Nomor Kendaraan Bermotor Menggunakan Zoning dan Fitur Freeman Chain Code,” J. Rekayasa Elektr., vol. 14, no. 1, pp. 19–25, 2018, doi: 10.17529/jre.v14i1.8932.

A. R. Syafira, “Sistem Deteksi Wajah Dengan Modifikasi Metode Viola Jones,” J. Tek. Elektro, vol. 17, no. 01, pp. 1–8, 2020.

N. Anggraini, F. Martunus, I. Marzuki Shofi, and L. K. Wardhani, “Implementasi Face Recognition Dengan Opencv Pada ‘Smart Cctv’ Untuk Keamanan Brankas Berbasis Iot,” J. Ilm. FIFO, vol. 13, no. 1, p. 41, 2021, doi: 10.22441/fifo.2021.v13i1.005.

Afrizal Zein, “Pendeteksian Multi Wajah Dan Recognition Secara Real Time Menggunakan Metoda Principal Component Analysis (Pca) Dan Eigenface,” J. Teknol. Inf. ESIT, vol. XII, no. 01, pp. 1–6, 2018.

B. Hartika, “Face Recognition Menggunakan Algoritma Haar Cascade Classifier Dan Convolutional Neural Network,” J. Math. UNP, vol. 6, no. 3, pp. 12–19, 2021, [Online]. Available: http://ejournal.unp.ac.id/students/index.php/mat/article/view/11954.

A. L. Shiyam, “Presensi Mahasiswa Dengan Ekstraksi Fitur Wajah,” pp. 1–11, 2019.

S. Al-Aidid and D. S. Pamungkas, “Sistem Pengenalan Wajah dengan Algoritma Haar Cascade dan Local Binary,” J. Rekayasa Elektr., pp. 1–8, 2018.

R. S. Prihantono, A. Mahzaruddin, Shiddiqi, Hudan, and Studiawan, “Rancang Bangun Sistem Keamanan dan Pengenalan Objek dalam Ruangan Sebagai Pengganti CCTV dengan Menggunakan Raspberry Pi,” J. Tek. POMITS, vol. 2, pp. 2301–9271, 2013.

K. S. d. Prado, “Face Recognition: Understanding LBPH Algorithm,” 2022.




DOI: https://doi.org/10.33387/protk.v11i1.4894

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Editorial Office :
Protek : Jurnal Ilmiah Teknik Elektro
Department of Electrical Engineering. Faculty of Engineering. Universitas Khairun.
Address: Jusuf Abdulrahman 53 Gambesi, Ternate City, Indonesia.
Email: protek@unkhair.ac.id, WhatsApp: +6282292852552
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View Stat Protek

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor