The Performance of Clay-based Biomass Briquette Stove with Three Geometry Shape Variations
Abstract
Keywords
Full Text:
PDFReferences
Njenga, M., Karanja, N., Karlsson, H., Jamnadass, R., Iiyama, M., Kithinji, J. and Sundberg, C. (2014). Additional cooking fuel supply and reduced global warming potential from recycling charcoal dust into charcoal briquettes in Kenya. J. Clean Prod., 81. 81–88. 2014, doi: https://doi.org/10.1016/j.jclepro. 2014.06.002.
Arif, E. and Suluh, S. (2014). Study of Performance Improvement of Various Stoves with Waste Biomass Briquettes Fuel. The 1st International Symposium on Smart Material and Mechatronics Graduate School of Mechanical Engineering University of Hasanuddin, 72.
Yuliah, Y., Kartawidjaja, M., Suryaningsih, S. & Ulfi, K. (2017). Fabrication and characterization of rice husk and coconut shell charcoal-based bio-briquettes as alternative energy source. doi: https://iopscience.iop.org/article/10.1088/1755-1315/65/1/012021
Amoako, G., & Mensah-Amoah, P. (2018). Determination of Calorific Values of Coconut Shells and Coconut Husks. J. Materials Science Research and Reviews, 2(2), 1–7. doi: 10.9734/JMSRR/2019/45639.
Lukas, A.G., Lombok, J.Z. & Anom, I.D.K. (2018). Briquettes made with mixtures of salak seed (Salacca zalacca) charcoal and coconut shell charcoal and the potential as an alternative Energy Source. Int. J. Appl. Eng. Res., 13(12), 10588–10592.
Musabbikhah, H. Saptoadi, Subarmono, & M. A. Wibisono, (2016). Optimization of temperature and time for drying and carbonization to increase calorific value of coconut shell using Taguchi method. AIP Conf. Proc., 1717. doi: 10.1063/1.4943430.
Sagdinakiadtikul, T. & Supakata, N. (2015). The Application of using Rice straw Coconut Shell and Rice Husk for Briquette, Int. J. Energy, Environ. Econ., 24(2), 20.
Suluh, S., Musadat, A.R., Djafar, Z., Amaliyah, N. & Piarah, W.H. (2019). The Efficiency of Steel Plate Biomass Briquette Stove with Variation of Aluminum Cylinder Diameter. Journal of Chemical Information and Modeling, 100–106.
Djafar, Z., Suluh, S., Amaliyah, N., Piarah, W.H. (2022). Comparison of the Performance of Biomass Briquette Stoves on Three Types of Stove Wall Materials. International Journal of Design & Nature and Ecodynamics, 17(1), 145–149. doi: 10.18280/ijdne.170119.
Djafar, Z., Suluh, S., Isra, M., Amaliyah, N. (2021). The Performance of Clay Furnace with Variation in the Diameters of the Briquette Burning Chamber. IOP Conference Series: Materials Science and Engineering, 2020, vol. 875, no. 1, p. 6, doi: 10.1088/1757-899X/875/1/011001.
Wang, J., Lou, H.H., Yang, F., & Cheng, F. (2016). Development and performance evaluation of a clean-burning stove, J. Clean. Prod., 1–9. doi: 10.1016/j.jclepro.2016.01.068.
Orhevba, P., Olatunji, B.A., O.I. & Obasa. (2018). Performance Evaluation of a Modified Briquette Stove, 3(2), 898–908.
Tyagi, S.K., Pandey, A.K, Sahu, S., Bajala, V. & Rajput, J.P.S. (2013). Experimental study and performance evaluation of various cook stove models based on energy and exergy analysis. J. Therm. Anal. Calorim. 111(3), 1791–1799. doi: 10.1007/s10973-012-2348-9.
Akolgo, G.A., Essandoh, E.O., Gyamfi, S., Atta-Darkwa, T., Kumi, E.N. & Maia, C. M. B. de F. (2018). The potential of a dual purpose improved cookstove for low income earners in Ghana–Improved cooking methods and biochar production. Renew. Sustain. Energy Rev. 82, May 2016, 369–379. doi: 10.1016/j.rser.2017.09.044.
Guerrero, F., Arriagada,A., Muñoz, F., Silva, P., Ripoll, N., & Toledo, M. (2021). Particulate matter emissions reduction from residential wood stove using inert porous material inside its combustion chamber, Fuel, 289, November 2021. doi: 10.1016/j.fuel.2020.119756.
Verma P. & Shukla, S.K. (2019). Performance evaluation of improved cook stove using briquette as fuel Performance Evaluation of Improved Cook Stove Using Briquette as Fuel, 020001, April, 2019.
Rasoulkhani, M., Ebrahimi-Nik, M., Abbaspour-Fard, M.H. & A. Rohani. (2018). A. Comparative evaluation of the performance of an improved biomass cook stove and the traditional stoves of Iran, Sustain. Environ. Res., 28 (6), 438–443. doi: 10.1016/j.serj.2018.08.001.
Murali, G., Channankaiah, Goutham, P., Hasan, I.E. & Anbarasan, P. (2015). Performance study of briquettes from agricultural waste for wood stove with catalytic combustor, Int. J. ChemTech Res., 8(1), 30–36.
Panwar, N.L. (2010). Performance Evaluation of Developed Domestic Cook Stove with Jatropha Shell, 309–314. doi: 10.1007/s12649-010-9040-8.
Ahiduzzaman, M. & Islam, A.K.M.S. (2013). Development of biomass stove for heating up die barrel of rice husk briquette machine, Procedia Eng., 56, 777–781. doi: 10.1016/j.proeng.2013.03.194.
Djafar, Z., Salsabila A.Z. & Piarah, W.H. (2021). Performance Comparison Between Hot Mirror and Cold Mirror as a Beam Splitter on Photovoltaic - Thermoelectric Generator Hybrid Using LabVIEW Simulator. International Journal of Heat and Technology, 39(5), 1609-1617. https://doi.org/10.18280/ijht.390524.
Kumar, M., Kumar, S. & Tyagi, S.K. (2013). Design, development and technological advancement in the biomass cookstoves: A review. Renew. Sustain. Energy Rev., 26, 265–285. doi: 10.1016/j.rser.2013.05.010.
Carty, N.M. & Bryden, K.M. (2014). A heat transfer model for the conceptual design of a biomass cookstove for developing countries. Proc. ASME Des. Eng. Tech. Conf., 3 August 2014. doi: 10.1115/DETC2013-12650.
Sahu, K.B & Singh, R.K. (2014). Analysis of heat transfer and flow due to natural convection in air around heated triangular cylinders of different sizes inside a square enclosure,†Procedia Eng., 90, 550–556. doi: 10.1016/j.proeng.2014.11.771.
Ambreen, C.W.P.T. & Saleem, A. (2019). Pin-Fin Shape-dependent heat transfer and fluid flow characteristics of water and nanofluid-cooled micro pin-fin heat sinks square, circular, and triangular fin cross-sections. Appl. Therm. Eng., 21(13-14), 1281–1282. doi: 10.1016/S1359-4311(01)00040-0.
Li, X., He, L., Qian, P., Huang, Z., Luo, C. & Liu, M. (2021). Heat transfer enhancement of droplet two-phase flow in cylindrical microchannel. Appl. Therm. Eng., 186. doi: 10.1016/j.applthermaleng.2020.116474.
DOI: https://doi.org/10.33387/protk.v10i2.5845
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Editorial Office :
Address: Jusuf Abdulrahman 53 Gambesi, Ternate City, Indonesia.
Email: protek@unkhair.ac.id, WhatsApp: +6282292852552