Potential Utilization of Flue Gas Using Organic Rankine Cycle (Study Case PLTMG Balai Pungut-Duri)

Riska Triyanti, Marhama Jelita

Abstract


PLTMG Balai Pungut-Duri is one of the largest gas engine type power plants in Riau with a capacity of 7x16 MW. The efficiency produced by the Balai Pungut-Duri PLTMG is 38% with the standards set by PT. PLN Efficiency in this type of generator is 45-47.5%. One of the factors that causes a reduction in the value of efficiency in power plants is that energy is converted into work and some is wasted, one of which is energy from flue gas. The purpose of this study is to examine the potential for utilizing flue gas using the Organic Rankine Cycle (ORC). The method used in this study is the law of thermodynamics 1 to determine the parameter values needed to determine the efficiency and power generated using the Engineering Equation Solver software. From the results of the calculations carried out, the Balai Pungut PLTMG produces an efficiency of 38.49% and a power of 14,530 kW under excited conditions. In utilizing flue gas using an organic rankine cycle it produces an efficiency of 19.97% with a power of 4,556 kW. the combined efficiency that can be produced by PLTMG Balai Pungut-Duri is 50.56% with a total power of 19,086 kW, with an efficiency increase of 12.07%. The results of the study show that the use of flue gas energy can increase efficiency according to PLN standards.


Keywords


PLTMG; Organic Rankine Cycle; EES; Thermodynamics

Full Text:

PDF

References


Kementrian ESDM, Statistik Ketenagalistrikan tahun 2021, vol. 53, no.9. Jakarta, 2022.

PT. PLN (Persero) ULPLTG/MG Balai Pungut, Manual Book Unit Pelayanan Pusat Listrik Tenaga Gas/Mesin Gas Balai Pungut. Duri, 2015.

Wärtsilä, Wärtsilä 50DF Engine Technology. Helsinki: Wärtsilä Coporation, 2016.

PT. PLN (Persero) ULPLTG/MG Balai Pungut, Manual book unit pelayanan pusat listrik tenaga gas / mesin gas Balai Pungut. 2015.

X. Dai, L. Shi, and W. Qian, “Material Compatibility of Hexamethyldisiloxane as Organic Rankine Cycle Working Fluids at High Temperatures,” Journal of Thermal Science, vol. 29, no. 1, pp. 25–31, Feb. 2020, doi: 10.1007/s11630-019-1147-z.

Muhammad Fadel, “Analisis Teknis dan Ekonomis Efek Rasio Kompresi pada Pembangkit Listrik Tenaga Mesin Gas (PLTMG) Menggunakan Siklus Energi Otto,” Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, 2021.

D. I. Permana and M. A. Mahardika, “Pemanfaatan Panas Buang Flue Gas PLTU Dengan Aplikasi Siklus Rankine Organik,” Barometer, vol. 4, no. 2, Aug. 2019, doi: 10.35261/barometer.v4i2.1851.

B. Xu, D. Rathod, A. Yebi, and Z. Filipi, “A comparative analysis of real-time power optimization for organic Rankine cycle waste heat recovery systems,” Appl Therm Eng, vol. 164, Jan. 2020, doi: 10.1016/j.applthermaleng.2019.114442.

S. O. Oyedepo and A. B. Fakeye, “Electric power conversion of exhaust waste heat recovery from gas turbine power plant using organic Rankine cycle,” International Journal of Energy and Water Resources, vol. 4, no. 2, pp. 139–150, Jun. 2020, doi: 10.1007/s42108-019-00055-3.

T. H. Hutapea and J. Windarta, “Pemanfaatan Gas Buang Turbin Gas Siklus Terbuka Dengan Sistem Organic Rankine Cycle,” Jurnal Energi Baru dan Terbarukan, vol. 3, no. 2, pp. 99–120, Jun. 2022, doi: 10.14710/jebt.2022.13332.

G. Fan et al., “Energy and exergy and economic (3E) analysis of a two-stage organic Rankine cycle for single flash geothermal power plant exhaust exergy recovery,” Case Studies in Thermal Engineering, vol. 28, Dec. 2021, doi: 10.1016/j.csite.2021.101554.

S. M. Shams Ghoreishi et al., “Analysis, economical and technical enhancement of an organic Rankine cycle recovering waste heat from an exhaust gas stream,” Energy Sci Eng, vol. 7, no. 1, pp. 230–254, Feb. 2019, doi: 10.1002/ese3.274.

G. Liao, J. E, F. Zhang, J. Chen, and E. Leng, “Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas,” Appl Energy, vol. 266, May 2020, doi: 10.1016/j.apenergy.2020.114891.

Cengel Yunus A, Boles Michael A, and M. Kanoglu, Thermodynamics : An Engineering Approach, 9th ed. New York: McGraw-Hill Education, 2019.

H. M. D. P. Herath, M. A. Wijewardane, R. A. C. P. Ranasinghe, and J. G. A. S. Jayasekera, “Working fluid selection of Organic Rankine Cycles,” Energy Reports, vol. 6, pp. 680–686, Dec. 2020, doi: 10.1016/j.egyr.2020.11.150.

S. O. Oyedepo and B. A. Fakeye, “Waste Heat Recovery Technologies: Pathway to Sustainable Energy Development,” Yildiz Technical University Press, 2021.




DOI: https://doi.org/10.33387/protk.v11i1.6270

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Riska Triyanti

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Editorial Office :
PROtek : Jurnal Ilmiah Teknik Elektro
Department of Electrical Engineering. Faculty of Engineering. Universitas Khairun.
Address: Jusuf Abdulrahman 53 Gambesi, Ternate City, Indonesia.
Email: protek@unkhair.ac.id, WhatsApp: +6282292852552
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View Stat Protek