Inflation by The Einstein-Scalar-Gauss-Bonet Theory with Potential Inflation
Abstract
Research has been conducted on the inflation theory by Einstein scalar-Gauss-Bonet theory with inflation potential to study the scenario of inflation. The purpose of this study is to calculate the inflation solution of the ESGB model. The research method used is a literature study with a mathematical approach. In this model, the Gauss-Bonet term is coupled with a scalar field so that it significantly modifies the dynamics of the early universe. The form of the scalar field used is , and the inflation potential is quadratic, . The lambda values used are 0.1, 0.2, 0.5, 1.0, 2.0, 10. For lambda < 0.5, successfully demonstrate the inflationary solution, namely obtaining an exponentially expanding scale factor and a fixed value of the Hubble constant. In addition, the linear e-fold value is obtained by a linear graph and an exponentially decaying scalar field is obtained and an exponentially decaying scalar field are obtained. These results indicate that the ESGB model with inflationary potential can demonstrate the existence of an inflationary solution
Keywords
References
Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J. P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., … Zonca, A. (2020). Planck 2018 results: X. Constraints on inflation. Astronomy and Astrophysics, 641. https://doi.org/10.1051/0004-6361/201833887
Amendola, L., & Tsijikawa, S. (2010). Dark Energi Theory and Observations. CAMBRIDGE UNIVERSITY.
Arvind, B., Guth, A. H., & Vilenkin, A. (2003). Inflationary Spacetimes Are Incomplete in Past Directions. Phys. Rev. Lett, 90. https://doi.org/DOI: https://doi.org/10.1103/PhysRevLett.90.151301
Dodelson, S. (2016). Modern Cosmology (1th ed.). academic press.
Guth, A. H. (1980). The Inflationary Universe: A Possible Solution To The Horizon And Flatness Problem. Physical Review D, 23(2), 347–356. https://doi.org/https://doi.org/10.1103/PhysRevD.23.347
Hikmawan, G., Suroso, A., & Zen, F. P. (2017). Power function inflation potential analysis for cosmological model with Gauss-Bonnet term Power function inflation potential analysis for cosmological model with Gauss-Bonnet term. Journal of Physics: Conference Series.
Kanti, P. (2015). Gauss-Bonnet inflation. 041302, 1–5. https://doi.org/10.1103/PhysRevD.92.041302
Kanti, P., Gannouji, R., & Dadhich, N. (2015). Early-time cosmological solutions in Einstein-scalar-Gauss-Bonnet theory. Physical Review D - Particles, Fields, Gravitation and Cosmology, 92(8), 1–13. https://doi.org/10.1103/PhysRevD.92.083524
Kawai, S., Sakagami, M., & Soda, J. (1997). Perturbative analysis of non-singular cosmological model 1. General Relativity and Quantum Cosmology, 1–8.
Kawai, S., & Soda, J. (1999). Structure Formation in Non-singular Higher Curvature Cosmology. General Relativity and Quantum Cosmology. http://arxiv.org/abs/gr-qc/9906046
Koh, S., Park, S. C., & Tumurtushaa, G. (2024). Higgs inflation with a Gauss-Bonnet term. Physical Review D, 110(2), 1–11. https://doi.org/10.1103/PhysRevD.110.023523
Martin, J. (2004). Inflation and precision cosmology. Brazilian Journal of Physics, 34(4 A), 1307–1321. https://doi.org/10.1590/S0103-97332004000700005
Martin, J. (2008). Inflationary perturbations: The cosmological schwinger effect. Lecture Notes in Physics, 738, 193–241. https://doi.org/10.1007/978-3-540-74353-8_6
Mudrunka, K., & Nakayama, K. (2025). Inflation with Gauss-Bonnet correction: beyond slow-roll. http://arxiv.org/abs/2504.01365
Odintsov, S. D., Oikonomou, V. K., Fronimos, F. P., & Venikoudis, S. A. (2020). GW170817-compatible Constant-roll Einstein-Gauss-Bonnet Inflation and Non-Gaussianities. 1–16. http://arxiv.org/abs/2009.06113
Planck Collaboration, Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Benabed, K., Bernard, J.-P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bracco, A., Bucher, M., Burigana, C., … Zonca, A. (2016). Planck 2016 results. ArXiv E-Prints [ArXiv:1807.06209], 12, 1–43. https://doi.org/10.1051/0004-6361/201833885%0Ahttps://www.aanda.org/10.1051/0004-6361/201833885
Soda, J., Sakagami, M., & Kawai, S. (1998). Novel Instability in Superstring Cosmology. General Relativity and Quantum Cosmology, 1–8. http://arxiv.org/abs/gr-qc/9807056
Solbi, M., & Karami, K. (2024). Primordial black holes in non-minimal Gauss–Bonnet inflation in light of the PTA data. European Physical Journal C, 84(9), 1–39. https://doi.org/10.1140/epjc/s10052-024-13271-x
DOI: https://doi.org/10.33387/tjp.v14i2.10643
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 USMAN SAMBIRI, Aji Saputra

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------------------------------
TECHNO: Jurnal Penelitian
Published by: LPPM Universitas Khairun
Addres : Jalan Yusuf Abdurrahman Kampus II Unkhair, Kelurahan Gambesi, 97722 Kecamatan Kota Ternate Selatan, Provinsi Maluku Utara, Email: techno@unkhair.ac.id | URL: http://ejournal.unkhair.ac.id/index.php/Techno
Techno Jurnal Penelitian is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


























