Optimization of Drying Time and Thermal Performance of Solar Dryer for Tekwan Products Based on Energy Balance Analysis

Devina Sanchia Samosir, Yohandri Bow, Arizal Aswan

Abstract


Energy requirements for production efficiency can be obtained from fossil fuels or renewable energy sources. The traditional drying process in Tekwan production is often inefficient and weather-dependent. Solar-powered drying technology using photovoltaic panels can improve cleanliness, efficiency, and product quality, and is suitable for application in Indonesia. Traditional drying faces challenges in terms of time efficiency and product quality due to weather dependence. This study designed a drying device with tiered racks and an automatic motor for heat distribution. Tests were conducted at 40°C for 1 to 5 hours to analyze moisture content, energy efficiency, and exergy. Results showed a decrease in moisture content from 57.21% to 34% after 5 hours, although it did not meet the SNI 11 standard. The highest thermal efficiency was achieved at 4 hours (84.42%), exergy efficiency was 77.61%, and the lowest exergy loss was 0.520 kJ/mol. Environmental factors, such as humidity and airflow speed, influence performance. Heat loss through convection and radiation remain the main challenges. Design improvements are needed to reduce heat loss and achieve optimal drying.


Keywords


Energy, Exergy, Humidity, Drying, Tekwan

Full Text:

PDF

References


Adellea, A. J. (2022). Implementation of New Energy and Renewable Energy Policy in the Context of National Energy Security. Indonesian State Law Review (ISLRev), 4(2), 43-51. https://doi.org/10.15294/islrev.v4i2.61093.

Agustini, T. W., Darmanto, Y. S., & Susanto, E. (2009). Physicochemical properties of some dried fish products in Indonesia. Journal of Coastal Development, 12(2), 73-80.

Amirtharajan, S., Loganathan, K., Mahalingam, A., Premkumar, M., & Nadesan, P. (2024). Optimization of thermal photovoltaic hybrid solar dryer for drying peanuts. Renewable Energy, 235, 121312. https://doi.org/10.1016/j.renene.2024.121312.

Ananto, R. A., Handani, G. P. C., Santoso, A. H., & Gumilang, B. S. (2023). Analisis Beberapa Jenis PLTS di Khatulistiwa Menggunakan Prototype alat ukur PV. Elposys: Jurnal Sistem Kelistrikan, 10(3), 208-211. https://doi.org/10.33795/elposys.v10i3.4527

Asiah, N., Sari, D. A., Triyastuti, M. S., & Djaeni, M. (2023). Peralatan pengering pangan. Yogyakarta: Bintang Semestar Media Yogyakarta.

BSN (Badan Standardisasi Nasional). (2009). SNI 2715.1:2009 – Kerupuk ikan.

Chang, L., Lin, S., Zou, B., Zheng, X., Zhang, S., & Tang, Y. (2021). Effect of frying conditions on self-heating fried Spanish mackerel quality attributes and flavor characteristics. Foods, 10(1), 98. https://doi.org/10.3390/foods10010098.

Hariyadi, T. (2018). Pengaruh suhu operasi terhadap penentuan karakteristik pengeringan busa sari buah tomat menggunakan tray dryer. Jurnal Rekayasa Proses, 12(2), 46. https://doi.org/10.22146/jrekpros.39019

Harahap, F., & Siregar, A. M. (2019). Pengaruh suhu dan waktu pengeringan terhadap kadar air dan kadar protein kerupuk ikan. Jurnal Teknologi dan Industri Pangan, 30(2), 89–97.

Hassan, M. H., Saidur, R., & Mekhilef, S. (2019). Exergy analysis of drying systems: A review. Renewable and Sustainable Energy Reviews, 112, 123–137. https://doi.org/10.1016/j.rser.2019.05.041.

Hin, L., Mean, C. M., Kim, M. C., Chhoem, C., Bunthong, B., Lor, L., Sourn, T., & Prasad, P. V. V. (2024). Development and performance assessment of sensor-mounted solar dryer for micro-climatic modeling and optimization of dried fish quality in Cambodia. Clean Technology, 6(3): 954-972. https://doi.org/10.3390/cleantechnol6030048.

Hosseini, S. M., & Shadmehri, M. (2016). Moisture diffusion coefficient and drying kinetics of red pepper during convective drying. Heat and Mass Transfer, 52(1), 71–80. https://doi.org/10.1007/s00231-015-1564-2.

Hridoy, M. H., Sarkar, F. R., & Aktar, S. (2025). Modification and performaance evaluation of lot enabled solar dryer for fish drying. GSC Advanced Research and Reviews, 22(1): 1-13. https://doi.org/ 10.30574/gscarr.2025.22.1.0519.

Kamalanathan, R., Hemalatha, B., & Sreekumar, A. (2018). Role of solar drying sysmtens to mitigate CO2 emissions in food processing industries. Green Energy and Technology. In book: Low Carbon Energy Supply. https://doi.org/10.1007/978-981-10-7326-7_4.

Kaveh, M., Yeganehzad, M., & Rajabzadeh, R. (2021). Study on drying kinetics and modelling of fish under different environmental humidities. Journal of Food Process Engineering, 44(2), e13602. https://doi.org/10.1111/jfpe.13602.

Kumar, R., & Sahu, J. K. (2018). Optimization and performance evaluation of indirect solar dryer for fish drying. Renewable Energy, 127, 924–931. https://doi.org/10.1016/j.renene.2018.05.006.

Mafe, A. N., Edo, G. I., Makia, R. S., Joshua, O. A., Akpoghelie, P. O., Gaaz, T. S., Jikah, A. N., Yousif, E., Isoje, E. F., Igbuku, U. A., Ahmed, D. S., Essaghah, A. E. A., & Umar, H. (2024). A review on food spoilage mechanisms, food borne disease and commercial aspects of food preservation and processing. Food Chemistry Advances, 5: 100852. https://doi.org/10.1016/j.focha.2024.100852.

Mohammadi, A., Yousefi, H., & Ghobadian, B. (2020). Design and exergy analysis of hybrid solar-biomass dryer. Renewable Energy Focus, 35, 22–31. https://doi.org/10.1016/j.ref.2020.10.004.

Nakra, S., Tripathy, S., & Srivastav, P. P., (2025). Drying as a preservation strategy for medicinal plants: Physicochemical and functional outcomes for foof and human health. Phytomedicine Plus, 5(2): 100762. https://doi.org/10.1016/j.phyplu.2025.100762.

Nasrullah, R., Siregar, M. R., & Putra, A. Y. (2021). Analisis efisiensi energi dan exergi pada sistem pengeringan produk pangan. Jurnal Keteknikan Pertanian, 39(1), 47–56.

Nnamchi, O., Tom, C., Akpan, C., Umunna, M., Ubong, D., Ibeh, M., Linus-Chibuezeh, A., Akuwueke, L., Nnamchi, S., Ben, A., & Ndukwu, M. (2025). solar dryers: A review of mechanism, methods and critical analysis of transport models applicable in solar drying of product. Green Energy and Resources, 3(2): 100118. https://doi.org/10.1016/j.gerr.2025.100118.

Pauer, E., Wohner, B., Heinrich, V., & Tracker, M. (2019). Assessing the environmental sustainability of food packaging: An extended life cycle assessment including packaging-related food losses and waste and circularity assessment. Sustainability, 11(3): 925. https://doi.org/10.3390/su11030925.

Setyawan, D., Pratama, W. A., & Hermawan, H. (2020). Optimasi pengeringan kerupuk ikan dengan metode solar dryer. Jurnal Teknologi Hasil Perikanan, 9(1), 34–41.

Shahsavar, A., Ameri, M., & Gholampour, M. (2012). Energy and exergy analysis of a photovoltaic-thermal collector with natural air flow. Journal of Solar Energy Engineering, Transactions of the ASME, 134(1), 1–10. https://doi.org/10.1115/1.4005250.

Sioshansi, F. P. (2008). Competitive electricity markets: questions remain about design, implementation, performance. Electricity Journal, 21(2), 74–87. https://doi.org/10.1016/j.tej.2008.02.001.

Solikah, A. A., & Bramastia, B. (2024). Systematic literature review : kajian potensi dan pemanfaatan sumber daya energi baru dan terbarukan di Indonesia. Jurnal Energi Baru Dan Terbarukan, 5(1), 27–43. https://doi.org/10.14710/jebt.2024.21742.

Tumbal, N., Ludong, D. P., & Lengkey, L. C. (2022). Modification of rack type solar energy dryer. Cocos, 14(4), 1–13.

Usman, M. (2020). Analisis intensitas cahaya terhadap energi listrik yang dihasilkan panel surya. Power Elektronik: Jurnal Orang Elektro, 9, 52–57. https://doi.org/10.30591/polektro.v9i2.2047.

Zachariah, R., Maatallah, T., & Modi, A. (2020). Environmental and economic analysis of a photovoltaic assisted mixed mode solar dryer with thermal energy storage and exhaust air recirculation. International Journal of Energy Research, 45(2): 1879-1891. https://doi.org/10.1002/er.5868.




DOI: https://doi.org/10.33387/tjp.v14i1.9790

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Devina Sanchia Samosir, Yohandri Bow, Arizal Aswan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


-------------------------------------------------------------------------------------------------------------------------------------------------------------------

           


      

-------------------------------------------------------------------------------------------------------------------------------------------------------------------
TECHNO: Jurnal Penelitian
Published by: LPPM Universitas Khairun
Addres : Jalan Yusuf Abdurrahman Kampus II Unkhair, Kelurahan Gambesi, 97722 Kecamatan Kota Ternate Selatan, Provinsi Maluku Utara, Email: techno@unkhair.ac.id | URL: http://ejournal.unkhair.ac.id/index.php/Techno 

  


Techno Jurnal Penelitian is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.