Tinjauan Sistematis Nilai dan Efektivitas Faktor P (Praktik Pendukung) dalam Model USLE/RUSLE untuk Pengendalian Erosi Lahan

Nurmaranti Alim, Setyardi Pratika Mulya

Sari


Erosi merupakan isu penting terkait lingkungan karena berdampak pada kesuburan tanah, kualitas air, dan keseimbangan ekosistem. Model USLE (Universal Soil Loss Equation) dan RUSLE (Revised USLE) merupakan model empiris yang telah banyak digunakan untuk memperkirakan kehilangan tanah. Akan tetapi salah satu komponen yaitu faktor P (praktik pendukung) masih menjadi komponen ketidakakuratan model. Kajian ini bertujuan untuk menganalisis perkembangan penentuan nilai faktor P pada model prediksi erosi USLE/RUSLE. Penentuan nilai P yang dinilai dari tabel konvensional sering tidak mencerminkan kondisi konservasi aktual di lapangan. Kajian ini menggunakan metode Systematic Literature Review (SLR) terhadap 50 artikel terpilih periode 2010–2025 dengan basis data ScienceDirect dan Scopus. Artikel mencakup jurnal bereputasi internasional dengan kategori Quartil 1 hingga Quartil 3 pada bidang Environmental Science dan Hydrology. Hasil menunjukkan tren yang dominan terhadap integrasi model empiris dengan teknologi Geographic Information System (GIS) dan penginderaan jauh untuk menghasilkan peta P-faktor yang lebih dinamis dan spasial. Beberapa literatur melakukan kalibrasi terhadap faktor P pada model Soil and Water Assessment Tool (SWAT) untuk meningkatkan akurasi estimasi sedimen, sedangkan pendekatan empiris lapangan menghasilkan nilai P yang lebih kontekstual. Pendekatan adaptif berbasis kondisi aktual diperlukan untuk meningkatkan akurasi prediksi erosi.


Kata Kunci


Faktor P, Penginderaan jauh, RUSLE, SLR, USLE

Teks Lengkap:

PDF (111-120)

Referensi


Almendinger, J. E., Murphy, M. S., & Ulrich, J. S. (2014). Use of the Soil and Water Assessment Tool to Scale Sediment Delivery from Field to Watershed in an Agricultural Landscape with Topographic Depressions. Journal of Environmental Quality, 43(1), 9–17. https://doi.org/10.2134/jeq2011.0340

Aouissi, J., Dridi, S., Benabdallah, S., Nsiri, I., Benrhouma, A., & Attia, R. (2025). Erosion Modeling At the Rmil Watershed in Northern Tunisia Using the Usle and the Swat Models. Applied Ecology and Environmental Research, 23(2), 2541–2563. https://doi.org/10.15666/aeer/2302_25412563

Ayalew, L. T., & Bharti, R. (2022). Modeling sediment yield of Rib watershed, Northwest Ethiopia. ISH Journal of Hydraulic Engineering, 28(S1), 491–502. https://doi.org/10.1080/09715010.2020.1797544

Benavidez, R., Bethanna, J., Deborah, M., & Kevin., N. (2018). A-review-of-the-Revised-Universal-Soil-Loss-Equation-RUSLE-With-a-view-to-increasing-its-global-applicability-and-improving-soil-loss-estimates2018Hydrology-and-Earth-System-SciencesOpen-Access.pdf. Hydrology and Earth System Sciences, 1995, 6059–6086.

Bing, D., & Lei, S. (2022). Remote Sensing Quantitative Research on Soil Erosion in the Upper Reaches of the Minjiang River. Frontiers in Earth Science, 10(July), 1–15. https://doi.org/10.3389/feart.2022.930535

Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K. Van, Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02142-7

da Silva, R. M., Montenegro, S. M. G. L., & Santos, C. A. G. (2012). Integration of GIS and remote sensing for estimation of soil loss and prioritization of critical sub-catchments: A case study of Tapacurá catchment. Natural Hazards, 62(3), 953–970. https://doi.org/10.1007/s11069-012-0128-2

De Paula, A. L., Pereira dos Santos, A., Belfort Poletti, F., & Wagner Lourenço, R. (2025). Adjustment of the conservation practices factor calculation in estimating soil loss. RAEGA - O Espaço Geográfico Em Análise, 63(1), 125–151. https://doi.org/10.5380/raega.v63i1.100335

Didoné, E. J., Gomes Minella, J. P., & Allasia Piccilli, D. G. (2021). How to model the effect of mechanical erosion control practices at a catchment scale? International Soil and Water Conservation Research, 9(3), 370–380. https://doi.org/10.1016/j.iswcr.2021.01.007

Drzewiecki, W., Wężyk, P., Pierzchalski, M., & Szafrańska, B. (2014). Quantitative and Qualitative Assessment of Soil Erosion Risk in Małopolska (Poland), Supported by an Object-Based Analysis of High-Resolution Satellite Images. Pure and Applied Geophysics, 171(6), 867–895. https://doi.org/10.1007/s00024-013-0669-7

Erol, A., Koşkan, & Başaran, M. A. (2015). Socioeconomic modifications of the universal soil loss equation. Solid Earth, 6(3), 1025–1035. https://doi.org/10.5194/se-6-1025-2015

François, M., Gordon, C. A., Costa de Oliveira, U., Rousseau, A. N., & Mariano-Neto, E. (2024). Assessing the Global Sensitivity of RUSLE Factors: A Case Study of Southern Bahia, Brazil. Soil Systems, 8(4). https://doi.org/10.3390/soilsystems8040125

Fredj, A., Ghernaout, R., Dahmani, S., & Remini, B. (2024). Assessing soil erosion through the implementation of the RUSLE model and geospatial technology in the Isser watershed, northern Algeria. Water Supply, 27(7), 2487–2505. https://doi.org/10.2166/ws.2024.154

García, L., Veneros, J., Pucha-Cofrep, F., Chávez, S., Bustamante, D. E., Calderón, M. S., Morales, E., & Oliva, M. (2021). Geospatial Analysis of Soil Erosion including Precipitation Scenarios in a Conservation Area of the Amazon Region in Peru. Applied and Environmental Soil Science, 2021. https://doi.org/10.1155/2021/5753942

Hateffard, F., Mohammed, S., Alsafadi, K., Enaruvbe, G. O., Heidari, A., Abdo, H. G., & Rodrigo-Comino, J. (2021). CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-86618-z

Hosseini, S. H., & Khaleghi, M. R. (2020). Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: the Zoshk–Abardeh watershed). Modeling Earth Systems and Environment, 6(4), 2003–2013. https://doi.org/10.1007/s40808-020-00846-2

Islam, M. R., Imran, H. M., Islam, M. R., & Saha, G. C. (2024). A RUSLE-based comprehensive strategy to assess soil erosion in a riverine country, Bangladesh. Environmental Earth Sciences, 83(6). https://doi.org/10.1007/s12665-024-11455-y

Islam, M. R., Jaafar, W. Z. W., Hin, L. S., Osman, N., & Karim, M. R. (2020). Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE. Applied Water Science, 10(7). https://doi.org/10.1007/s13201-020-01185-4

Jiao, J., Qin, W., Li, K., & Yin, Z. (2022). Study on the P Factor of Tillage Practices in the Typical Black Soil Areas of Northeast China Under Extreme Rainfall Conditions. Applied Ecology and Environmental Research, 20(2), 1613–1633. https://doi.org/10.15666/aeer/2002_16131633

Kumar, M., Sahu, A. P., Sahoo, N., Dash, S. S., Raul, S. K., & Panigrahi, B. (2022). Global-scale application of the RUSLE model: a comprehensive review. Hydrological Sciences Journal, 67(5), 806–830. https://doi.org/10.1080/02626667.2021.2020277

Li, J., Xiong, M., Sun, R., & Chen, L. (2024a). Temporal variability of global potential water erosion based on an improved USLE model. International Soil and Water Conservation Research, 12(1), 1–12. https://doi.org/10.1016/j.iswcr.2023.03.005

Li, J., Xiong, M., Sun, R., & Chen, L. (2024b). Temporal variability of global potential water erosion based on an improved USLE model. International Soil and Water Conservation Research, 12(1), 1–12. https://doi.org/10.1016/j.iswcr.2023.03.005

Madasamy, N., Joshua, M. B., & Rajangam, L. (2020). Estimation of soil loss by an integrated approach of USLE and geospatial techniques—a case study of Kumulur watershed. Arabian Journal of Geosciences, 13(19). https://doi.org/10.1007/s12517-020-05929-z

Ostovari, Y., Ghorbani-Dashtaki, S., Bahrami, H. A., Naderi, M., & Dematte, J. A. M. (2017). Soil loss prediction by an integrated system using RUSLE, GIS and remote sensing in semi-arid region. Geoderma Regional, 11(February), 28–36. https://doi.org/10.1016/j.geodrs.2017.06.003

Pahleviannur, M. R. (2024). Pengelolaan Sumberdaya Alam dan Pelestarian Lingkungan Hidup melalui Hukum Adat SASI di Indonesia: A Systematic Literature Review. Renewable Energy Issues, 1(1), 10. https://doi.org/10.47134/rei.v1i1.1

Panagos, P., Borrelli, P., & Meusburger, K. (2015). A new European slope length and steepness factor (LS-factor) for modeling soil erosion by water. Geosciences (Switzerland), 5(2), 117–126. https://doi.org/10.3390/geosciences5020117

Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C. (2015). The new assessment of soil loss by water erosion in Europe. Environmental Science and Policy, 54, 438–447. https://doi.org/10.1016/j.envsci.2015.08.012

Patil, R. J., Sharma, S. K., Tignath, S., & Sharma, A. P. M. (2017). Use of remote sensing, GIS and C++ for soil erosion assessment in the Shakkar River basin, India. Hydrological Sciences Journal, 62(2), 217–231. https://doi.org/10.1080/02626667.2016.1217413

Pham, T. G., Degener, J., & Kappas, M. (2018). Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research, 6(2), 99–110. https://doi.org/10.1016/j.iswcr.2018.01.001

Pineda, V. G., Valencia-Arias, A., Giraldo, F. E. L., & Zapata-Ochoa, E. A. (2025). Integrating artificial intelligence and quantum computing: A systematic literature review of features and applications. International Journal of Cognitive Computing in Engineering, 7(April 2025), 26–39. https://doi.org/10.1016/j.ijcce.2025.08.002

Piyathilake, I. D. U. H., Udayakumara, E. P. N., & Gunatilake, S. K. (2021). Gis and rs based soil erosion modelling in sri lanka: A review. Journal of Agricultural Sciences - Sri Lanka, 16(1), 143–162. https://doi.org/10.4038/jas.v16i1.9192

Scholand, D., & Schmalz, B. (2024). Automated quantification of contouring as support practice for improved soil erosion estimation considering ridges. International Soil and Water Conservation Research, 12(4), 761–774. https://doi.org/10.1016/j.iswcr.2024.07.001

Schürz, C., Mehdi, B., Kiesel, J., Schulz, K., & Herrnegger, M. (2020). A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors-a case study for Kenya and Uganda. Hydrology and Earth System Sciences, 24(9), 4463–4489. https://doi.org/10.5194/hess-24-4463-2020

Selmy, S. A. H., Al-Aziz, S. H. A., Jiménez-Ballesta, R., García-Navarro, F. J., & Fadl, M. E. (2021). Modeling and assessing potential soil erosion hazards using usle and wind erosion models in integration with gis techniques: Dakhla oasis, egypt. Agriculture (Switzerland), 11(11). https://doi.org/10.3390/agriculture11111124

Tian, P., Zhu, Z., Yue, Q., He, Y., Zhang, Z., Hao, F., Guo, W., Chen, L., & Liu, M. (2021). Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. International Soil and Water Conservation Research, 9(3), 433–444. https://doi.org/10.1016/j.iswcr.2021.04.007

Valkanou, K., Karymbalis, E., Bathrellos, G., Skilodimou, H., Tsanakas, K., Papanastassiou, D., & Gaki-Papanastassiou, K. (2022). Soil Loss Potential Assessment for Natural and Post-Fire Conditions in Evia Island, Greece. Geosciences (Switzerland), 12(10), 1–15. https://doi.org/10.3390/geosciences12100367

Weiler, E. B., Tamiosso, M. F., Cruz, J. C., Reichert, J. M., Schorr, L. P. B., Mantovanelli, B. C., Dos Santos, F. D., Fantinel, R. A., &

Baumhardt, E. (2021). Integrated environmental management and planning based on soil erosion susceptibility scenarios. Anais Da Academia Brasileira de Ciencias, 93(4), 1–16. https://doi.org/10.1590/0001-3765202120191120

Xiong, M., Sun, R., & Chen, L. (2019). Global analysis of support practices in USLE-based soil erosion modeling. Progress in Physical Geography, 43(3), 391–409. https://doi.org/10.1177/0309133319832016




DOI: https://doi.org/10.33387/cannarium.v23i2.10942

Refbacks

  • Saat ini tidak ada refbacks.


##submission.copyrightStatement##

##submission.license.cc.by-nc-sa4.footer##


Journal PoliciesSubmissionsPeople
 Information

Editorial Officer Cannarium
Faculty of Agriculture, Universitas Khairun
Jl. Jusuf Abdurahman, Gambesi, Ternate, North Maluku - Indonesia
E-mail : cannarium@unkhair.ac.id or cannarium.unhkair@gmail.com
Creative Commons License
Cannarium
Publisher Faculty of Agriculture, Universitas Khairun This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.