Variasi Tingkat Perkembangan Tanah Berdasarkan Ordo Tanah di Kelurahan Moti Kota, Kota Ternate, Indonesia
Sari
Kompleksitas proses pedogenesis pada pulau vulkanik kecil yang berpengaruh terhadap tingkat perkembangan tanah, khususnya ordo Entisol dan Inceptisol di Kelurahan Moti Kota, Kota Ternate. Kondisi iklim tropis basah, bahan induk piroklastik Kuarter–Holosen, serta variability topografi memunculkan perbedaan morfologi dan sifat fisik-kimia tanah yang signifikan. Tujuan penelitian adalah mengidentifikasi dan membandingkan variasi tingkat perkembangan profil tanah berdasarkan indikator pedogenik termasuk nisbah debu/liat, KTK/liat, rasio C/N, dan rasio Fe-oksalat/Fe-dithionit serta mendeskripsikan karakteristik morfologi, fisik, dan kimia tanah pada dua profil representatif, yakni Entisol (profil II) dan Inceptisol (profil I). Metode yang digunakan meliputi survei toposekuens dengan penggalian profil pada setiap posisi elevasi, deskripsi morfologi lapangan sesuai prosedur USDA, analisis tekstur (metode pipet), pH H₂O, kapasitas tukar kation (NH₄OAc pH 7,0), Saturasi Basa, karbon organik (Walkley–Black), total N (Kjeldahl), serta ekstraksi besi oksalat dan dithionit. Data kuantitatif dianalisis untuk menghitung nisbah indikator pedogenesis dan diklasifikasikan menurut Soil Taxonomy USDA. Hasil penelitian menunjukkan bahwa profil I (Inceptisol) membentuk horizon cambic dengan struktur gumpal menyudut, peningkatan fraksi liat dari 20 % hingga 35 %, nilai KTK 19,95–23,25 cmol(+)/kg, dan decreasing basa saturation dari 60 % ke 33 %. Indikator nisbah debu/liat menurun dari 1,25 pada horizon Ap ke 0,15 pada horizon Bb/C, sedangkan rasio Feₒ/Fe_d berfluktuasi menandakan proses transformasi oksida besi lanjutan. Sebaliknya, profil II (Entisol) hanya memiliki horizon A dengan tekstur lempung berpasir, KTK 20,95 cmol(+)/kg, saturasi basa 62 %, nisbah debu/liat 0,85, dan rasio Feₒ/Fe_d 1,10, menggambarkan tanah muda dengan sedikit perkembangan horizon. Kesimpulan penelitian menyatakan bahwa interaksi bahan induk vulkanik, iklim lembap tropis, organisme, topografi, dan waktu menghasilkan gradiens perkembangan tanah dari Entisol ke Inceptisol di Kelurahan Moti Kota. Pemahaman mendalam terhadap variasi ini penting untuk perencanaan penggunaan lahan berkelanjutan, di mana Inceptisol cocok untuk hortikultura intensif dan Entisol memerlukan tutupan vegetatif untuk mencegah erosi.
Kata Kunci
Teks Lengkap:
PDF (9-25)Referensi
Adegbite, K. A., Okafor, M. E., Adekiya, A. O., Alori, E. T., & Adebiyi, O. T. V. (2019). Characterization and Classification of Soils of a Toposequence in a Derived Savannah Agroecological Zone of Nigeria. The Open Agriculture Journal, 13(1), 44–50. https://doi.org/10.2174/1874331501913010044
Aguirre, J. (2023). The Kjeldahl method. In Springer (Issue July 2023). https://doi.org/10.1007/978-3-031-31458-2
Alves, G. B., Soares de, F. O., da Silva, A. H. N., & Junior, V. S. de S. (2024). Toposequence: What are we talking about? Revista Brasileira de Ciência Do Solo, 48, 1–24. https://doi.org/10.5040/9798400670961.0004
Amorim, H. C. S., Hurtarte, L. C. C., Souza, I. F., & Zinn, Y. L. (2022). C:N ratios of bulk soils and particle-size fractions: Global trends and major drivers. Geoderma, 425(November). https://doi.org/10.1016/j.geoderma.2022.116026
Anda, M., & Dahlgren, R. A. (2020). Long-term response of tropical Andisol properties to conversion from rainforest to agriculture. Catena, 194(November). https://doi.org/10.1016/j.catena.2020.104679
Anda, M., Kasno, A., Ginting, C. B., Barus, P. A., & Purwanto, S. (2021). Response of Andisols to intensive agricultural land use: Implication on changes in P accumulation and colloidal surface charge. IOP Conference Series: Earth and Environmental Science, 648(1). https://doi.org/10.1088/1755-1315/648/1/012016
Anggriawan, R., Ariska Salsabilla, N., & Ayu Prahesti, I. (2023). Volcanic Soils: Their Characteristics, Management Practices, and Potential Sollution for Water Pollution. SEAS (Sustainable Environment Agricultural Science), 7(1), 18–29. https://doi.org/10.22225/seas.7.1.6313.18-29
Anindita, S., Finke, P., & Sleutel, S. (2023). Tropical Andosol organic carbon quality and degradability in relation to soil geochemistry as affected by land use. Soil, 9(2), 443–459. https://doi.org/10.5194/soil-9-443-2023
Arifin, M., Nurlaeny, N., Devnita, R., Fitriatin, B. N., Sandrawati, A., & Supriatna, Y. (2018). The Variable Charge of Andisols as Affected by. AIP Conference, 030033(February), 030033-1-030033–030037.
Candra, I. N., Gerzabek, M. H., Ottner, F., Wriessnig, K., Tintner, J., Schmidt, G., Rechberger, M. V, Rampazzo, N., & Zehetner, F. (2021). Soil development and mineral transformations along a one‐million‐year chronosequence on Galapaogos Island. Soil Science Society of America Journal, 85, 2077–2099. https://doi.org/DOI: 10.1002/saj2.20317
Chen, Z. S., Tsou, T. C., Asio, V. B., & Tsai, C. C. (2001). Genesis of inceptisols on a volcanic landscape in taiwan. Soil Science, 166(4), 255–266. https://doi.org/10.1097/00010694-200104000-00005
Chhabra, B. S., Thakur, D. S., & Bajpai, S. K. (2002). Free bonding energy between cations of entisols, inceptisols and alfisols of India. Journal of the Indian Chemical Society, 79(7), 616–619.
College of Tropical Agriculture and Human Resources. (2025). Soil Mineralogy. University of Hawai.
Dörner, J., Zúñiga, F., Valle, S., Martínez, I., Prat, C., & Óskarsson, H. (2019). Manejo Sustentable de Suelos Derivados de Cenizas Volcánicas. Agro Sur, 47(3), 1–3. https://doi.org/10.4206/agrosur.2019.v47n3-01
Eswaran, H., & Reich, P. F. (2004). World Soil Map. Encyclopedia of Soils in the Environment, 4, 352–365. https://doi.org/10.1016/B0-12-348530-4/00019-9
Fiantis, D., Ginting, F. I., Gusnidar, Nelson, M., & Minasny, B. (2019). Volcanic Ash, insecurity for the people but securing fertile soil for the future. Sustainability (Switzerland), 11(11). https://doi.org/10.3390/su11113072
Fiantis, D., Rudiyanto, Ginting, F. I., Utami, S. R., Sukarman, Anda, M., Jeon, S. H., & Minasny, B. (2022). Sustaining the productivity and ecosystem services of soils in Indonesia. Geoderma Regional, 28(January), e00488. https://doi.org/10.1016/j.geodrs.2022.e00488
Ginting, E., Arcot, J., & Chox, J. M. (2003). Determination of Folate Retention During Tofu Preparation Using Trienzyme Treatment and Microbiological Assay. Indonesian Journal of Agricultural Science, 4(1), 12–17. https://doi.org/10.21082/ijas.v4n1.2003.p12-17
Hartshorn, G. S. (2013). Tropical Forest Ecosystems. Encyclopedia of Biodiversity, Third Edition: Volume 1-7, 0, V1-264-V1-272. https://doi.org/10.1016/B978-0-12-822562-2.00316-9
Herdiansyah, G., Arifin, M., & Suriadikusumah, A. (2022). The Pedogenesis of Inceptisols on Southeast Toposequence of Mount Manglayang in West Java, Indonesia. Indonesian Journal on Geoscience, 9(2), 195–208. https://doi.org/10.17014/ijog.9.2.195-208
Hossain, S. A., & Mazrin, M. (2023). Determination of organic carbon of soil by Walkley Black Method Principle Determination of organic carbon of soil by Walkley Black Method. Jashore University of Science and Technology, September, 2–5. https://doi.org/10.13140/RG.2.2.32699.80162/1
Ikhwali, M. F., Rau, M. I., Nur, S., Ferijal, T., Prayogo, W., & Saputra, S. F. D. (2022). Application of Soil and Water Assessment Tool in Indonesia – a review and challenges. Desalination and Water Treatment, 277, 105–119. https://doi.org/10.5004/dwt.2022.29018
Kabala, C., & Jedrzejewski, S. (2024). Comparison of cation exchange capacity extraction methods for soil data harmonization and soil classification in Central and East Europe. Geoderma, 450(September). https://doi.org/10.1016/j.geoderma.2024.117044
Kong, X., Li, D., Song, X., & Zhang, G. (2021). New Algorithm of Clay CEC for Soils in Tropical and Subtropical Regions of South China. Agricultural Sciences, 12(10), 1048–1057. https://doi.org/10.4236/as.2021.1210067
Li, K., Hu, Y., Chen, L., Peckmann, J., Zhang, D., Feng, D., & Chen, D. (2024). A modified dithionite reduction method for the quantification of iron-bound organic carbon in marine sediments. Marine Chemistry, 265–266(September). https://doi.org/10.1016/j.marchem.2024.104428
Matus, F., Rumpel, C., Neculman, R., Panichini, M., & Mora, M. L. (2014). Soil carbon storage and stabilisation in andic soils: A review. Catena, 120(September), 102–110. https://doi.org/10.1016/j.catena.2014.04.008
Minasny, B., Fiantis, D., Hairiah, K., & Van Noordwijk, M. (2021). Applying volcanic ash to croplands – The untapped natural solution. Soil Security, 3(November 2020), 100006. https://doi.org/10.1016/j.soisec.2021.100006
Mosley, L. M., Rengasamy, P., & Fitzpatrick, R. (2024). Soil pH: Techniques, challenges and insights from a global dataset. European Journal of Soil Science, 75(6), 1–18. https://doi.org/10.1111/ejss.70021
Mozaffari, H., Moosavi, A. A., Baghernejad, M., & Cornelis, W. (2024). Revisiting soil texture analysis: Introducing a rapid single-reading hydrometer approach. Measurement: Journal of the International Measurement Confederation, 228(March). https://doi.org/10.1016/j.measurement.2024.114330
Navarrete, I. A., Tsutsuki, K., Kondo, R., & Asio, V. B. (2008). Genesis of soils across a late Quaternary volcanic landscape in the humid tropical island of Leyte, Philippines. Australian Journal of Soil Research, 46(5), 403–414. https://doi.org/10.1071/SR08012
Neall, V. E. (2006). Volcanic Soil. Land Use and Lan Cover (Encyclopedia of Life Support Systems (EOLSS)), VII, 1–24.
Neswati, R., Lopulisa, C., Rivananda, & Basir, A. (2019). Characteristics and Classification of Soil Formed from Banda Recent Volcanic Ash on Various Topographic Positions. IOP Conference Series: Earth and Environmental Science, 280(1). https://doi.org/10.1088/1755-1315/280/1/012017
Olatunji, O. O., Oyeyiola, Y., & Oyediran, G. O. (2015). Assessment of Dithionite and Oxalate Extractable Iron and Aluminium Oxides on a Landscape on Basement Complex Soil in South-Western Nigeria. Open Journal of Soil Science, 05(11), 266–275. https://doi.org/10.4236/ojss.2015.511025
Ouyang, N., Zhang, P., Zhang, Y., Sheng, H., Zhou, Q., Huang, Y., & Yu, Z. (2023). Cation Exchange Properties of Subsurface Soil in Mid-Subtropical China: Variations, Correlation with Soil-Forming Factors, and Prediction. Agronomy, 13(3). https://doi.org/10.3390/agronomy13030741
Ouyang, N., Zhang, Y., Sheng, H., Zhou, Q., Huang, Y., & Yu, Z. (2021). Clay mineral composition of upland soils and its implication for pedogenesis and soil taxonomy in subtropical China. Scientific Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-021-89049-y
Pegalajar, M. C., Ruiz, L. G. B., Sánchez-Marañón, M., & Mansilla, L. (2020). A Munsell colour-based approach for soil classification using Fuzzy Logic and Artificial Neural Networks. Fuzzy Sets and Systems, 401(December), 38–54. https://doi.org/10.1016/j.fss.2019.11.002
Podwojewski, P., & Janeau, J. L. (2005). Short-term effects of agricultural practices on the soil structure and hydrodynamic in a deep tilled hardened sandy-silty volcanic – ash soil ( cangahua ) in Ecuador. Session 4 “Physical Properties of Tropical Sandy Soils” Short-Term, January 2005, 215–241.
Ramos, F. T., Dores, E. F. de C., Weber, O. L. do. S., Beber, D. C., Campelo, J. H., & Maia, J. C. d. S. (2018). Soil organic matter doubles the cation exchange capacity of tropical soil under no-till farming in Brazil. Journal of the Science of Food and Agriculture, 98(9), 3595–3602. https://doi.org/10.1002/jsfa.8881
Rolo, V., Rivest, D., Maillard, É., & Moreno, G. (2023). Agroforestry potential for adaptation to climate change: A soil- based perspective. Soil Use and Management, 39(2023), 1006–1032.
Sabareeshwari, V., da Silva, L. E., Chandran, D., Sureshkumar, R., Marthandan, V., Kumar, K. K., Naveen Kumar, P., Sangeetha, K. S., Mohankumar, P., Yashodha, M., & Krithiks, C. (2021). Soil Forming Factors and Morphological Characteristics of Soil - A Review. Indian Veterinary Journal, 98(12), 9–15.
Sanchez, P. A. (2019). Soils of the Tropics. In Properties and Management of Soils in the Tropics (Issue 2005). https://doi.org/10.1017/9781316809785.006
Soil Survey Staff. (1999). Soil Taxonomy: A Basic System of Soil Clasification for Making and Interpreting Soil Surveys. In United States Departement of Agriculture, natural Resources Conservation Service (2nd ed., Vol. 2). https://doi.org/10.1007/BF01574372
Soil Survey Staff. (2014). Keys to soil taxonomy. In Natural Resources Conservation Service (12th ed., Vol. 12). United States Department of Agriculture Natural Resources Conservation Service. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051546.pdf
Soil Survey Staff. (2015). Illustrated guide to soil taxonomy, version 2. In U.S. Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center Resources Conservation Service, National Soil Survey Center (Vol. 11, Issue 1). National Soil Survey Center. https://doi.org/10.2134/jae.1982.0003
Sonon, L. S., Kissel, David, E., & Saha, U. (2022). Exchange Capacity and Base Saturation. University of Georgia, 5–8.
Spinola, D., Margerum, A., Zhang, Y., Hesser, R., D’Amore, D., & Portes, R. (2024). Rapid soil formation and carbon accumulation along a Little Ice Age soil chronosequence in southeast Alaska. Catena, 246(October), 108460. https://doi.org/10.1016/j.catena.2024.108460
Sufardi, S. (2024). How to enhance soil quality in dryland farming systems in Indonesia (Review). IOP Conference Series: Earth and Environmental Science, 1297(1). https://doi.org/10.1088/1755-1315/1297/1/012071
Sukarman, Ritung Sofyan, Anda, M., & Suryani, E. (2017). Pedoman Pengamatan Tanah Di Lapangan. In Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian (Issue February 2018). https://www.researchgate.net/publication/323398964
Tsai, C., Chang, Y., & Lee, C. (2024). Using the Pedogenetic Oxid Ratio in Distinguishing Volcanic Soil Weathering Intensity in Subtropical Region. Geoderma Regional, 38(September). https://doi.org/https://doi.org/10.1016/j.geodrs.2024.e00836
Watanabe, T., Hasenaka, Y., Hartono, A., Sabiham, S., Nakao, A., & Funakawa, S. (2017). Parent Materials and Climate Control Secondary Mineral Distributions in Soils of Kalimantan, Indonesia. Soil Science Society of America Journal, 81(1), 124–137. https://doi.org/10.2136/sssaj2016.08.0263
Watanabe, T., Ueda, S., Nakao, A., Ze, A. M., Dahlgren, R. A., & Funakawa, S. (2023). Disentangling the pedogenic factors controlling active Al and Fe concentrations in soils of the Cameroon volcanic line. Geoderma, 430(May 2022), 1–13. https://doi.org/10.1016/j.geoderma.2022.116289
Yost, J. L., & Hartemink, A. E. (2019). Soil organic carbon in sandy soils: A review. Advances in Agronomy, 158(October), 217–310. https://doi.org/10.1016/bs.agron.2019.07.004
Zhang, Y., & Liu, Y. (2025). A new 1,10-phenanthroline method for oxalate-extractable iron measurement. Applied Geochemistry, 183(April). https://doi.org/10.1016/j.apgeochem.2025.106354
DOI: https://doi.org/10.33387/cannarium.v23i1.9739
Refbacks
- Saat ini tidak ada refbacks.
##submission.copyrightStatement##
##submission.license.cc.by-nc-sa4.footer##
Journal Policies | Submissions | People | Â Information |
Editorial Officer Cannarium
Faculty of Agriculture, Universitas Khairun
Jl. Jusuf Abdurahman, Gambesi, Ternate, North Maluku - Indonesia
E-mail : cannarium@unkhair.ac.id or cannarium.unhkair@gmail.com
Cannarium Publisher Faculty of Agriculture, Universitas Khairun This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.