COMPARING REGRESSION METHODS FOR ASSESSING AND PREDICTION THE IMPACT OF SALARY INCREASES ON EMPLOYEE PERFOMANCE

Palma Juanta, Zachary Djuli, Tifanny Tifanny, Delima Sitanggang, Anita Anita

Abstract


In today’s competitive digital era, data-driven decision-making is key to enhancing the efficiency of human resource management. One of the main challenges is objectively assessing the impact of salary increases on employee performance, which is often assumed to be a primary motivator but rarely proven quantitatively. This study conducts a comparative analysis of two data mining methods, Linear Regression and Decision Tree Regression, to assessing and predicting the impact of salary increases on employee performance. A case study was conducted at PT. Taipan Agro Mulia using the company’s internal historical data. The analysis shows that Linear Regression performed better with an R-Square value of 0.731 or 73.1%, indicating that 73.1% of the variation in employee performance can be explained by salary increases. In comparison, Decision Tree Regression achieved an R-Square value of 0.700 or 70.0%. Additionally, Linear Regression recorded lower prediction errors (MAE = 4.78; MSE = 38.60; RMSE = 6.21) than Decision Tree (MAE = 5.61; MSE = 66.41; RMSE = 8.15). These findings demonstrate that data analysis approaches can serve as a strong foundation for formulating strategic salary policies aimed at improving employee performance

References


M. Pusparani, “Faktor Yang Mempengaruhi Kinerja Pegawai (Suatu Kajian Studi Literatur Manajemen Sumber Daya Manusia),” J. Ilmu Manaj. Terap., vol. 2, no. 4, pp. 534–543, 2021, doi: 10.31933/jimt.v2i4.466.

A. Ariyanto and M. Ryansyah, “Decision Support System for Selecting the Best Employee At Pt Bank Digital Bca Using Saw Method,” JIKO (Jurnal Inform. dan Komputer), vol. 6, no. 1, pp. 72–78, 2023, doi: 10.33387/jiko.v6i1.5913.

R. Djutalov, P. R. S, and N. Sahirah, “Sistem Penilaian Kinerja Teknisi Berbasis Web Dengan Metode TOPSIS Pada IT Cyber Community,” BIIKMA Bul. Ilm. Ilmu Komput. dan Multimed., vol. 2, no. 4, pp. 759–765, 2024.

K. P. Ulandari, N. Chamidah, and A. Kurniawan, “Prediksi Risiko Gagal Bayar Kredit Kepemilikan Rumah Dengan Pendekatan Metode Random Forest,” SAINSMAT J. Ilm. Ilmu Pengetah. Alam, vol. 13, no. 2, pp. 162–170, 2024.

Muharni and W. Awaliah, “Penentuan Evaluasi Kinerja Karyawan Berbasis Logika Fuzzy Mamdani,” J. Secur. Comput. Information, Embed. Network, Intell. Syst., vol. 2, no. 2, pp. 109–117, 2024.

A. S. Riyadi, Suroso2, and M. M. Karnama, “Pengaruh Gaji dan Insentif Terhadap Kinerja Karyawan PT. Tenma Indonesia Karawang Factory,” J. Manag. Bussines, vol. 6, no. 1, pp. 20–29, 2024.

A. Septiani, K. B. Riyanto, and E. Aprinato, “Pengaruh Kompensasi Finansial Dan Kompensasi Nonfinansial Terhadap Kinerja Pegawai Samsat Pesisir Barat Lampung,” J. Manaj. Divers., vol. 4, no. 3, pp. 729–739, 2024, doi: 10.25130/sc.24.1.6.

I. G. A. Wirajaya et al., Pengantar Perpajakan. Bandung: CV. Media Sains Indonesia, 2023.

K. A. F. A. Samah, N. S. D. Wirakarnain, R. Hamzah, N. A. Moketar, L. S. Riza, and Z. Othman, “A linear regression approach to predicting salaries with visualizations of job vacancies: a case study of Jobstreet Malaysia,” IAES Int. J. Artif. Intell., vol. 11, no. 3, pp. 1130–1142, 2022, doi: 10.11591/ijai.v11.i3.pp1130-1142.

P. L. Jatika and K. R. Putra, “Comparison of Prediction Models : Decision Tree , Random Forest , and Support Vector Regression,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 6, no. 1, pp. 39–49, 2025.

P. B. Hakim and Z. Fatah, “Analisis Pengaruh KGB Terhadap Kinerja Karyawan Menggunakan Algoritma Naïve Bayes,” Gudang J. Multidisiplin Ilmu, vol. 2, no. 10, pp. 123–128, 2024.

M. A. Fikri and D. P. Prayogo, “Penerapan Metode Regresi Linear Untuk Prediksi Harga Layerzero Saat Listing,” J. Inform., vol. 1, no. 2, pp. 7–11, 2024.

W. S. Rudi, Y. A. Pranoto, and F. X. Ariwibisiono, “Penerapan Metode Regresi Linier Dalam Peramalan Penjualan Kue Di Toko Karya Bahari Samarinda Berbasis Website,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 4, pp. 2451–2457, 2023, doi: 10.36040/jati.v7i4.7547.

A. T. Nurani, A. Setiawan, and B. Susanto, “Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma,” J. Sains dan Edukasi Sains, vol. 6, no. 1, pp. 34–43, 2023, doi: 10.24246/juses.v6i1p34-43.

F. R. Hariri and L. W. Rochim, “Sistem Rekomendasi Produk Aplikasi Marketplace Berdasarkan Karakteristik Pembeli Menggunakan Metode User Based Collaborative Filtering,” Teknika, vol. 11, no. 3, pp. 208–217, 2022, doi: 10.34148/teknika.v11i3.538.

T. A. Prasetyo et al., “Sales forecasting of marketing using adaptive response rate single exponential smoothing algorithm,” Indones. J. Electr. Eng. Comput. Sci., vol. 31, no. 1, pp. 423–432, 2023, doi: 10.11591/ijeecs.v31.i1.pp423-432.

Andi, “Analisis Komparasi Algoritma Fuzzy Dalam Sistem Pendukung Keputusan Pemilihan Sepeda Motor Bekas,” J. TIMES, vol. 12, no. 2, pp. 71–78, 2023, doi: 10.51351/jtm.12.2.2023711.

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk Pt. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019.

X. Li, “Comparing Linear Regression and Decision Trees for Housing Price Prediction,” in International Conference on Data Science, Advanced Algorithm and Intelligent Computing (DAI), 2023, pp. 77–84, doi: 10.2991/978-94-6463-370-2_9.

I. Azure, “Predictive modeling for industrial productivity: Evaluating linear regression and decision tree regressor approaches,” J. AppliedMath, vol. 2, no. 4, p. 1435, 2024, doi: 10.59400/jam.v2i4.1435.




DOI: https://doi.org/10.33387/jiko.v8i3.10098

Refbacks

  • There are currently no refbacks.