HUMAN DIGITAL TWIN MODELING FOR ADVANCING ARRHYTHMIA TREATMENT
Abstract
References
W. S. P. Harmadha et al., “Explaining the increase of incidence and mortality from cardiovascular disease in Indonesia: A global burden of disease study analysis (2000–2019),” PLoS One, vol. 18, no. 12 December, pp. 1–19, 2023, doi: 10.1371/journal.pone.0294128.
M. Nadeem, S. Kostic, M. Dornhöfer, C. Weber, and M. Fathi, “A comprehensive review of digital twin in healthcare in the scope of simulative health-monitoring,” Digit. Heal., vol. 11, 2025, doi: 10.1177/20552076241304078.
A. Qanitha et al., “Clinical Cardiology in South East Asia: Indonesian Lessons from the Present towards Improvement,” Glob. Heart, vol. 17, no. 1, 2022, doi: 10.5334/GH.1133.
N. Y. Chan et al., “2021 Asia Pacific Heart Rhythm Society (APHRS) practice guidance on atrial fibrillation screening,” J. Arrhythmia, vol. 38, no. 1, pp. 31–49, 2022, doi: 10.1002/joa3.12669.
W. Jatmiko, M. A. Ma’sum, H. A. Wisesa, and H. R. Sanabila, “Developing smart tele-ECG system for early detection and monitoring heart diseases based on ecg signal: Progress and challenges,” Int. J. Smart Sens. Intell. Syst., vol. 12, no. 1, pp. 1–28, 2019, doi: 10.21307/IJSSIS-2019-009.
M. Grieves, Origins of the Digital Twin Concept. 2016. doi: 10.13140/RG.2.2.26367.61609.
Michael Grieves, “Digital Twin: Manufacturing Excellence through Virtual Factory Replication,” White Pap., no. March, pp. 1–7, 2014, [Online]. Available: https://www.researchgate.net/publication/275211047%0Ahttps://www.3ds.com/fileadmin/PRODUCTS-SERVICES/DELMIA/PDF/Whitepaper/DELMIA-APRISO-Digital-Twin-Whitepaper.pdf
F. Tao, M. Zhang, and A. Y. C. Nee, “Five-Dimension Digital Twin Modeling and Its Key Technologies,” in Digital Twin Driven Smart Manufacturing, Elsevier, 2019, pp. 63–81. doi: 10.1016/B978-0-12-817630-6.00003-5.
P. Karakasis et al., “Digital Twin Models in Atrial Fibrillation: Charting the Future of Precision Therapy?,” J. Pers. Med., vol. 15, no. 6, p. 256, 2025, doi: 10.3390/jpm15060256.
H. Herman, M. N. Annafii, M. Kunta Biddinika, and F. Fitriah, “Human Digital Twin Modeling for Cardiovascular System,” Sci. J. Informatics, vol. 12, no. 1, pp. 11–20, 2025, doi: 10.15294/sji.v11i4.16012.
A. Thelen et al., “A comprehensive review of digital twin — part 1: modeling and twinning enabling technologies,” Struct. Multidiscip. Optim., vol. 65, no. 12, p. 354, Dec. 2022, doi: 10.1007/s00158-022-03425-4.
N. A. Trayanova, A. Lyon, J. Shade, and J. Heijman, “Computational Modeling of Cardiac Electrophysiology and Arrhythmogenesis: Toward Clinical Translation,” Physiol. Rev., vol. 104, no. 3, pp. 1265–1333, 2024, doi: 10.1152/physrev.00017.2023.
S. Qian et al., “Developing cardiac digital twin populations powered by machine learning provides electrophysiological insights in conduction and repolarization,” Nat. Cardiovasc. Res., vol. 4, no. 5, pp. 624–636, 2025, doi: 10.1038/s44161-025-00650-0.
G. Plank et al., “The openCARP simulation environment for cardiac electrophysiology,” Comput. Methods Programs Biomed., vol. 208, pp. 1–21, 2021, doi: 10.1016/j.cmpb.2021.106223.
J. Camps et al., “Cardiac Digital Twin Pipeline for Virtual Therapy Evaluation,” pp. 1–65, 2024, [Online]. Available: http://arxiv.org/abs/2401.10029
F. Kong and S. C. Shadden, “Patient Images For Computational Simulations,” vol. XX, no. Xx, pp. 1–14, 2022.
D. Ugurlu et al., “Cardiac Digital Twins at Scale from MRI: Open Tools and Representative Models from ~55000 UK Biobank Participants,” pp. 1–18, 2025, doi: 10.1371/journal.pone.0327158.
E. Essa and X. Xie, “An Ensemble of Deep Learning-Based Multi-Model for ECG Heartbeats Arrhythmia Classification,” IEEE Access, vol. 9, pp. 103452–103464, 2021, doi: 10.1109/ACCESS.2021.3098986.
J. Camps, “Bayesian inference and Machine learning methods for the advanced analysis of electrocardiographic signals Julià Camps,” 2021.
K. H. W. J. Ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, “A model for human ventricular tissue,” Am. J. Physiol. - Hear. Circ. Physiol., vol. 286, no. 4 55-4, pp. 1–97, 2004, doi: 10.1152/ajpheart.00794.2003.
A. Loewe, P. J. Hunter, and P. Kohl, “Computational modelling of biological systems now and then: revisiting tools and visions from the beginning of the century,” 2025, doi: 10.1098/rsta.2023.0384.
R. A. Gray and P. Pathmanathan, “Patient-Specific Cardiovascular Computational Modeling : Diversity of Personalization and Challenges,” pp. 80–88, 2018.
R. Doste, J. Camps, Z. J. Wang, L. A. Berg, M. Holmes, and H. Smith, “An Automated Computational Pipeline for Generating Large-Scale Cohorts of Patient-Specific Ventricular Models in Electromechanical In Silico Trials,” 2024.
J. Corral-Acero et al., “The ‘Digital Twin’ to enable the vision of precision cardiology,” Eur. Heart J., vol. 41, no. 48, pp. 4556-4564B, 2020, doi: 10.1093/eurheartj/ehaa159.
P. Nikolov, H. Ashikaga, J. J. E. Blauer, E. Ghafoori, and C. J. Park, “Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia,” Nat. Biomed. Eng., vol. 2, no. 10, pp. 732–740, 2019, doi: https://doi.org/10.1038/s41551-018-0282-2.
R. G. Muthalaly and R. M. Evans, “Applications of Machine Learning in Cardiac Electrophysiology,” pp. 71–77, 2020.
DOI: https://doi.org/10.33387/jiko.v8i3.10656
Refbacks
- There are currently no refbacks.


