Implementation of Semi-Supervised Learning with YOLOv11 for On-Shelf Availability Detection of Retail
Abstract
References
Y. Cai, L. Wen, L. Zhang, D. Du, and W. Wang, “Rethinking Object Detection in Retail Stores,” 35th AAAI Conf. Artif. Intell. AAAI 2021, vol. 2A, pp. 947–954, 2021, doi: 10.1609/aaai.v35i2.16178.
Y. Wei, S. Tran, S. Xu, B. Kang, and M. Springer, “Deep Learning for Retail Product Recognition: Challenges and Techniques,” Comput. Intell. Neurosci., vol. 2020, 2020, doi: 10.1155/2020/8875910.
X. Wu, D. Sahoo, and S. C. H. Hoi, “Recent advances in deep learning for object detection,” Neurocomputing, vol. 396, no. d, pp. 39–64, 2020, doi: 10.1016/j.neucom.2020.01.085.
G. Li, X. Li, Y. Wang, Y. Wu, D. Liang, and S. Zhang, “PseCo: Pseudo Labeling and Consistency Training for Semi-Supervised Object Detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 13669 LNCS, pp. 457–472, 2022, doi: 10.1007/978-3-031-20077-9_27.
Y. Ouali, C. Hudelot, and M. Tami, “An Overview of Deep Semi-Supervised Learning,” pp. 1–43, 2020, [Online]. Available: http://arxiv.org/abs/2006.05278
V. Guimarães, J. Nascimento, P. Viana, and P. Carvalho, “A Review of Recent Advances and Challenges in Grocery Label Detection and Recognition,” Appl. Sci., vol. 13, no. 5, 2023, doi: 10.3390/app13052871.
K. Sohn et al., “FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence,” IEEE Trans. Ind. Informatics, vol. 37, no. 10, pp. 1575–1585, 2022, [Online]. Available: https://doi.org/10.1016/j.isprsjprs.2020.01.013%0Ahttps://doi.org/10.1016/j.isatra.2020.08.010%0Ahttps://doi.org/10.1016/j.knosys.2023.110634%0Ahttps://doi.org/10.1016/j.energy.2023.126726%0Ahttps://doi.org/10.1016/j.est.2022.105074%0Ahttps://doi.org/10.1
A. Mey and M. Loog, “Improved Generalization in Semi-Supervised Learning: A Survey of Theoretical Results,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4, pp. 4747–4767, 2023, doi: 10.1109/TPAMI.2022.3198175.
J. Smith, “Advances in Semi-Supervised Learning Techniques for Real-World Applications,” vol. 6, no. 1, pp. 9–20, 2025.
T. Shehzadi, Ifza, D. Stricker, and M. Z. Afzal, “Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer,” pp. 1–21, 2024, [Online]. Available: http://arxiv.org/abs/2407.08460
J. Qi, M. Nguyen, and W. Q. Yan, “CISO: Co-iteration semi-supervised learning for visual object detection,” Multimed. Tools Appl., vol. 83, no. 11, pp. 33941–33957, 2024, doi: 10.1007/s11042-023-16915-4.
J. Chauhan, S. Varadarajan, and M. M. Srivastava, “Semi-supervised Learning for Dense Object Detection in Retail Scenes,” pp. 1–4, 2021, [Online]. Available: http://arxiv.org/abs/2107.02114
D. H. Fudholi, A. Kurniawardhani, G. I. Andaru, A. A. Alhanafi, and N. Najmudin, “YOLO-based Small-scaled Model for On-Shelf Availability in Retail,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 8, no. 2, pp. 265–271, 2024, doi: 10.29207/resti.v8i2.5600.
R. Yilmazer and D. Birant, “Shelf Auditing Based on Image Classification Using Semi-Supervised Deep Learning to Increase On-Shelf,” sensors Artic., vol. 21, no. 2, 2021.
D. Jha, A. Mahjoubfar, and A. Joshi, Designing an Efficient End-to-end Machine Learning Pipeline for Real-time Empty-shelf Detection, vol. 1, no. 1. Association for Computing Machinery, 2022. [Online]. Available: http://arxiv.org/abs/2205.13060
R. Digo Saputra and D. Hatta Fudholi, “Model Mobile untuk Deteksi Objek pada On-Shelf Availability Produk Retail,” 2023.
R. Khanam and M. Hussain, “YOLOv11: An Overview of the Key Architectural Enhancements,” vol. 2024, pp. 1–9, 2024, [Online]. Available: http://arxiv.org/abs/2410.17725
Tzutalin, “LabelImg.” Accessed: Aug. 15, 2025. [Online]. Available: https://github.com/tzutalin/labelImg
G. Jocher and J. Qiu, “Ultralytics YOLO11.” Accessed: Oct. 03, 2025. [Online]. Available: https://github.com/ultralytics/ultralytics
K. Sohn, Z. Zhang, C.-L. Li, H. Zhang, C.-Y. Lee, and T. Pfister, “A Simple Semi-Supervised Learning Framework for Object Detection,” 2020, [Online]. Available: http://arxiv.org/abs/2005.04757
DOI: https://doi.org/10.33387/jiko.v8i3.10881
Refbacks
- There are currently no refbacks.


