CLUSTERING ANALYSIS OF SIGNIFICANT WAVE HEIGHT DYNAMICS USING K-MEANS ALGORITHM IN THE SEMARANG–DEMAK COASTAL WATERS
Abstract
Global climate change has led to an increase in the frequency and intensity of extreme events at sea, including in the Semarang-Demak coastal area. This region is highly vulnerable to the dynamics of Significant Wave Height (SWH), sea level rise, and coastal land subsidence. As a result, in addition to disrupting maritime navigation, frequent occurrences of tidal flooding (rob) have caused significant disturbances to economic activities and settlements in the coastal area. This study aims to develop a clustering model for SWH in the Semarang-Demak waters using the K-Means algorithm. The data used includes oceanographic and meteorological parameters from the Tanjung Emas Semarang Maritime Meteorological Station (BMKG) for the period 2019-2024. The clustering results show that K-Means successfully formed three clusters of sea waves representing calm, moderate, and high waves. Model evaluation using the Silhouette Score with a value of 0.725 and the Davies-Bouldin Index (DBI) of 0.425 indicates good performance, with K=3 as the optimal cluster. Temporal analysis reveals a clear seasonal pattern, where high energy conditions dominate during the west season (December-February), while calm conditions are prevalent during the east season (June-August). These findings provide a foundation for early warning systems and disaster risk management in this region, with further clustering tests using other algorithms and the need for improved data quality.
Full Text:
PDFReferences
G. Erutjahjo and A. Supriyanto, “Prediksi Tinggi Gelombang Laut di Perairan Semarang – Demak dengan Menggunakan Random Forest dan XGBoost,” Jurnal Informatika : Jurnal pengembangan IT, vol. 10, no. 4, pp. 869–881, 2025, doi: 10.30591/jpit.v10i4.9315.
Z. Ahmad and M. Mansurova, “Machine Learning Approach To Predict Significant Height,” Journal of Mathematics, Mechanics and Computer Science, vol. 2, no. 110, pp. 87–96, 2021.
F. Retika, D. N. Sugianto, and R. Widiaratih, “Analisis Terjadinya Gelombang Tinggi Akibat Pola Pergerakan Angin Terkait Keselamatan Pelayaran di Perairan Utara Jawa Tengah,” Indonesian Journal of Oceanography, vol. 6, no. 4, pp. 334–343, 2024, doi: 10.14710/ijoce.v6i4.24678.
P. Raharjo, F. B. Prasetio, G. N. Hawari, and N. A. Kristanto, “Dinamika Pantai Kota Semarang, Jawa Tengah,” Jurnal Geologi Kelautan, vol. 22, no. 2, pp. 130–145, 2025, doi: 10.32693/jgk.22.2.2024.926.
H. T. Mudho, I. A. Azies, J. Setiyadi, E. A. Kisnarti, and W. S. Pranowo, “Karakteristik Tinggi Gelombang Laut di Perairan Halmahera Utara dan Morotai pada Periode Waktu ENSO Tahun 2012-2021,” Jurnal Kelautan Tropis, vol. 28, no. 1, pp. 11–24, 2025, doi: 10.14710/jkt.v28i1.25192.
S. V. Haiyqal, A. Ismanto, E. Indrayanti, and R. Andrianto, “Karakteristik Tinggi Gelombang Laut pada saat Periode Normal, El Niño dan La Niña di Selat Makassar,” Jurnal Kelautan Tropis, vol. 26, no. 1, pp. 190–202, 2023, doi: 10.14710/jkt.v26i1.17003.
J. Mo, X. Wang, S. Huang, and R. Wang, “Advance in Significant Wave Height Prediction: A Comprehensive Survey,” Complex System Modeling and Simulation, vol. 4, no. 4, pp. 402–439, 2025, doi: 10.23919/csms.2024.0019.
K. K. Khairullah, A. Rifai, and E. Indrayanti, “Studi Luasan Genangan Banjir Rob Akibat Kenaikan Muka Air Laut Dan Penurunan Muka Study of the Area of Flood Inundation Due to Sea Level Rise and Land Subsidence in Sayung District , Demak,” Indonesian Journal of Oceanography (IJOCE), vol. 06, no. 04, pp. 316–323, 2024, doi: 10.14710/ijoce.v6i4.24645.
A. Supriyanto, D. A. Diartonor, B. Hartono, and A. Jananto, “Classification Of Sea Wave Heights On The North Coast Of Central Java Using Random Forest,” Jurnal Teknik Informatika (JUTIF), vol. 6, no. 4, pp. 2263–2280, 2025, [Online]. Available: https://jutif.if.unsoed.ac.id/index.php/jurnal/article/view/5108/915
W. Han et al., “Sea level extremes and compounding marine heatwaves in coastal Indonesia,” Nature Communications, vol. 13, no. 1, pp. 1–12, 2022, doi: 10.1038/s41467-022-34003-3.
C. Tay et al., “Sea-level rise from land subsidence in major coastal cities,” Nature Sustainability, vol. 5, no. 12, pp. 1049–1057, 2022, doi: 10.1038/s41893-022-00947-z.
G. Mulyasari, Irham, L. R. Waluyati, and A. Suryantini, “Understanding and adaptation to climate change of fishermen in the northern coastal of Central Java, Indonesia,” IOP Conference Series: Earth and Environmental Science, vol. 724, no. 1, 2021, doi: 10.1088/1755-1315/724/1/012094.
S. Susilo et al., “GNSS land subsidence observations along the northern coastline of Java, Indonesia,” Scientific Data, vol. 10, no. 1, pp. 1–8, 2023, doi: 10.1038/s41597-023-02274-0.
K. Triana and A. J. Wahyudi, “Sea level rise in Indonesia: The drivers and the combined impacts from land subsidence,” ASEAN Journal on Science and Technology for Development, vol. 37, no. 3, pp. 115–121, 2020, doi: 10.29037/AJSTD.627.
A. Supriyanto, E. Zuliarso, E. T. Suharmanto, H. Amalina, and F. Damaryanti, “Drought Prediction Using Lstm Model With Standardized Precipitation Index on the North Coast of Central Java,” Jurnal Teknik Informatika (Jutif), vol. 5, no. 6, pp. 1873–1882, 2024, doi: 10.52436/1.jutif.2024.5.6.4159.
C. Murtiaji, M. Irfani, I. Fauzi, A. S. D. Marta, C. I. Sukmana, and D. A. Wulandari, “Methods for addressing tidal floods in coastal cities: An overview,” IOP Conference Series: Earth and Environmental Science, vol. 1224, no. 1, 2023, doi: 10.1088/1755-1315/1224/1/012019.
J. Li et al., “Prediction of Seawater Intrusion Run-Up Distance Based on K-Means Clustering and ANN Model,” Journal of Marine Science and Engineering, vol. 13, no. 2, pp. 1–18, 2025, doi: 10.3390/jmse13020377.
Z. Lin, N. F. S. Zulkepli, M. S. Bin Mohd Kasihmuddin, and R. Gobithaasan, “A Topological-Indicators-Based k-Means Clustering Algorithm and Its Application in Time Series Data: A Case Study on Sea Level Variability in Peninsular Malaysia,” IEEE Access, vol. 13, no. March, pp. 46514–46533, 2025, doi: 10.1109/ACCESS.2025.3548558.
T. E. Moe, T. M. D. Pereira, F. Calvo, and J. Leenaarts, “Shape-based clustering of synthetic Stokes profiles using k -means and k -Shape,” Astronomy and Astrophysics, vol. 675, no. A130, pp. 1–12, 2023, doi: 10.1051/0004-6361/202346724.
A. Papadimitriou and V. Tsoukala, “Evaluating and enhancing the performance of the K-Means clustering algorithm for annual coastal bed evolution applications,” Oceanologia, vol. 66, no. 2, pp. 267–285, 2024, doi: 10.1016/j.oceano.2023.12.005.
A. Aprianti, A. Jufriansah, P. B. Donuata, A. Khusnani, and J. Ayuba, “Comparison of K-Means Algorithm and DBSCAN on Aftershock Activity in the Flores Sea: Seismic Activity 2019-2022,” Journal of Novel Engineering Science and Technology, vol. 2, no. 03, pp. 77–82, 2023, doi: 10.56741/jnest.v2i03.393.
D. Wang, D. Conley, M. Hann, K. Collins, S. Jin, and D. Greaves, “Power output estimation of a RM3 WEC with HF radar measured complex representative sea states,” International Marine Energy Journal, vol. 5, no. 1, pp. 1–10, 2022, doi: 10.36688/imej.5.1-10.
H. Li et al., “A Novel Sea State Classification Scheme of the Global CFOSAT Wind and Wave Observations,” Journal of Geophysical Research: Oceans, vol. 129, no. 11, 2024, doi: 10.1029/2023JC020686.
G. Erutjahjo, “Sistem informasi pasang surut menggunakan alat palem pasut”.
DOI: https://doi.org/10.33387/jiko.v8i3.10964
Refbacks
- There are currently no refbacks.


