DETEKSI MASKER WAJAH MENGGUNAKAN DEEP TRANSFER LEARNING DAN AUGMENTASI GAMBAR

Raden Budiarto Hadiprakoso, Nurul Qomariasih

Abstract


Pandemi COVID-19 saat ini merupakan masalah kesehatan global. Menurut WHO, memakai masker wajah di depan umum adalah metode perlindungan yang efektif. Mengenakan masker merupakan salah satu gerakan 3M untuk pencegahan virus corona (selain mencuci tangan dan menjaga jarak). Bagaimana pun pengawasan pemakaian masker di ruang publik yang ramai bukanlah tugas yang mudah. Makalah ini mengusulkan penggunaan deep learning untuk mendeteksi orang yang memakai masker wajah dengan benar, memakai masker namun tidak benar dan yang tidak memakai masker. Kami menerapkan transfer learning dan augmentasi gambar, untuk meningkatkan kinerja model deep learning diusulkan secara keseluruhan. Penelitian ini menggunakan dataset CelebA untuk wajah tidak memakai masker dan dataset maskedface net untuk wajah yang bermasker dengan benar dan yang memakainya tapi tidak benar (seperti hanya menutupi mulutnya). Dengan menggunakan augmentasi gambar dan pembelajaran transfer, model yang dibangun mencapai akurasi 98,3% dan skor F1 98,7% pada dataset validasi. Hasil pengujian menunjukkan bahwa teknik augmentasi gambar dan transfer learning mampu meningkatkan akurasi model secara keseluruhan.


References


M. Ciotti, M. Ciccozzi, A. Terrinoni, W. C. Jiang, C. Bin Wang, and S. Bernardini, “The COVID-19 pandemic,†Critical Reviews in Clinical Laboratory Sciences, vol. 57, no. 6. Taylor & Francis, pp. 365–388, Aug. 17, 2020, doi: 10.1080/10408363.2020.1783198.

T. P. Velavan and C. G. Meyer, “The COVIDâ€Â19 epidemic,†Trop. Med. Int. Heal., vol. 25, no. 3, pp. 278–280, Mar. 2020, doi: 10.1111/tmi.13383.

D. Planas et al., “Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization,†Nature, vol. 596, no. 7871, pp. 276–280, Aug. 2021, doi: 10.1038/s41586-021-03777-9.

J.-M. Guo, C.-C. Lin, M.-F. Wu, C.-H. Chang, and H. Lee, “Complexity Reduced Face Detection Using Probability-Based Face Mask Prefiltering and Pixel-Based Hierarchical-Feature Adaboosting,†IEEE Signal Process. Lett., vol. 18, no. 8, pp. 447–450, Aug. 2020, doi: 10.1109 /LSP.2011.2146772.

K. Suresh, M. Palangappa, and S. Bhuvan, “Face Mask Detection by using Optimistic Convolutional Neural Network,†in 2021 6th International Conference on Inventive Computation Technologies (ICICT), Jan. 2021, pp. 1084–1089, doi: 10.1109/ICICT 50816.2021.9358653.

A. Oumina, N. El Makhfi, and M. Hamdi, “Control The COVID-19 Pandemic: Face Mask Detection Using Transfer Learning,†in 2020 IEEE 2nd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Dec. 2020, pp. 1–5, doi: 10.1109/ICECOCS 50124.2020.9314511.

C. Indonesia, “Kasus Covid-19 Melonjak, Dokter Sarankan Pakai Double Masker.†https://www.cnnindonesia.com/gaya-hidup/20210621140923-255-657254/kasus-covid-19-melonjak-dokter-sarankan-pakai-double-masker (accessed Sep. 28, 2021).

L. Li, Z. Xia, X. Jiang, Y. Ma, F. Roli, and X. Feng, “3D face mask presentation attack detection based on intrinsic image analysis,†IET Biometrics, vol. 9, no. 3, pp. 100–108, May 2020, doi: 10.1049/iet-bmt.2019.0155.

A. Chavda, J. Dsouza, S. Badgujar, and A. Damani, “Multi-Stage CNN Architecture for Face Mask Detection,†in 2021 6th International Conference for Convergence in Technology (I2CT), Apr. 2021, pp. 1–8, doi: 10.1109/I2CT51068.2021.9418207.

P. Nagrath, R. Jain, A. Madan, R. Arora, P. Kataria, and J. Hemanth, “SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2,†Sustain. Cities Soc., vol. 66, p. 102692, Mar. 2021, doi: 10.1016/j.scs.2020.102692.

J. Yu and W. Zhang, “Face Mask Wearing Detection Algorithm Based on Improved YOLO-v4,†Sensors, vol. 21, no. 9, p. 3263, May 2021, doi: 10.3390/s21093263.

A. Cabani, K. Hammoudi, H. Benhabiles, and M. Melkemi, “MaskedFace-Net -- A Dataset of Correctly/Incorrectly Masked Face Images in the Context of COVID-19,†Aug. 2020.

O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep Face Recognition,†in Procedings of the British Machine Vision Conference 2015, 2015, pp. 41.1-41.12, doi: 10.5244/C.29.41.

G. Jignesh Chowdary, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Face Mask Detection Using Transfer Learning of InceptionV3,†in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12581 LNCS, Springer Science and Business Media Deutschland GmbH, 2020, pp. 81–90.

G. Jignesh Chowdary, N. S. Punn, S. K. Sonbhadra, and S. Agarwal, “Face Mask Detection Using Transfer Learning of InceptionV3,†in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, vol. 12581 LNCS, pp. 81–90, doi: 10.1007/978-3-030-66665-1_6.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,†Jan. 2018.

A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile




DOI: https://doi.org/10.33387/jiko.v5i1.3591

Refbacks

  • There are currently no refbacks.