AN EVALUATION OF THE POWER SUPPORT INTERNET INFRASTRUCTURE OF MAKASSAR CITY IN TELEMEDICINE FRAME
Abstract
This research aims to find the quality of the internet in Makassar City. It uses a 10 Mbps service from Indihome to support telemedicine. The study is a case study of sending raw MRI image data to the AWS cloud. The research uses a virtual server from the AWS cloud. It stores raw MRI image data. The data will be sent via the FTP client FileZilla. The tests were carried out eight times. They used the quality of service standard formula from TIPHON. The results come from 8 tests. In the tests, MRI image data was sent to the AWS cloud. The results show that the average throughput value was 4.53 Mbps with an index of 4. This result is excellent. Packet loss is low at 0.01% with an index of 4, which is very good. The delay is 1.7 ms with an index of 3, which is good. The jitter is 1.69 ms with an index of 3, which is good. The quality of service test results are based on TIPHON standards. They show that sending Raw MRI image data to the AWS cloud at 10 Mbps from Indihome in Makassar City is good.
Full Text:
PDFReferences
W. Li et al., “Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy,” Quant. Imaging Med. Surg., vol. 10, no. 6, pp. 1223–1236, Jun. 2020, doi: 10.21037/qims-19-885.
M. Pramita, “Implementasi Metode Bilateral Filter Untuk Mengurangi Derau Pada Citra Magnetic Resonance Imaging (MRI),” Inf. Dan Teknol. Ilm. INTI, vol. 7, no. 3, Art. no. 3, Jun. 2020.
R. Reda, A. Zanza, A. Mazzoni, A. Cicconetti, L. Testarelli, and D. Di Nardo, “An Update of the Possible Applications of Magnetic Resonance Imaging (MRI) in Dentistry: A Literature Review,” J. Imaging, vol. 7, no. 5, Art. no. 5, May 2021, doi: 10.3390/jimaging7050075.
Y. Zhang et al., “MRI magnetic compatible electrical neural interface: From materials to application,” Biosens. Bioelectron., vol. 194, p. 113592, Dec. 2021, doi: 10.1016/j.bios.2021.113592.
T. Heye et al., “The Energy Consumption of Radiology: Energy- and Cost-saving Opportunities for CT and MRI Operation,” Radiology, vol. 295, no. 3, pp. 593–605, Jun. 2020, doi: 10.1148/radiol.2020192084.
J. Vosshenrich et al., “Interventional Imaging Systems in Radiology, Cardiology, and Urology: Energy Consumption, Carbon Emissions, and Electricity Costs,” Am. J. Roentgenol., Mar. 2024, doi: 10.2214/AJR.24.30988.
“MRI-Transparency-Document.pdf.” Accessed: Apr. 02, 2024. [Online]. Available: https://floridapoly.edu/wp-content/uploads/MRI-Transparency-Document.pdf
O. Erin, M. Boyvat, M. E. Tiryaki, M. Phelan, and M. Sitti, “Magnetic Resonance Imaging System–Driven Medical Robotics,” Adv. Intell. Syst., vol. 2, no. 2, p. 1900110, 2020, doi: 10.1002/aisy.201900110.
SITI ROHAYA, “INTERNET: PENGERTIAN, SEJARAH, FASILITAS DAN KONEKSINYA,” JurnalFihrisFihris Vol III No1 Januari - Juni 2008, Jun. 2008, Accessed: Apr. 02, 2024. [Online]. Available: https://digilib.uin-suka.ac.id/id/eprint/362/
Y. B. Pello and R. Efendi, “ANALISIS QUALITY OF SERVICE MENGGUNAKAN METODE HIERARCHICAL TOKEN BUCKET (STUDI KASUS : FTI UKSW),” JIKO J. Inform. Dan Komput., vol. 4, no. 3, Art. no. 3, Dec. 2021, doi: 10.33387/jiko.v4i3.3430.
“pengenalan_internet-libre.pdf.” Accessed: Apr. 02, 2024. [Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/46056562/pengenalan_internet-libre.pdf?1464580325=&response-content-disposition=inline%3B+filename%3DModul_Pengenalan_Internet.pdf&Expires=1711995375&Signature=eq3c9CCYr4XlwhoT-k9zWGrWI~oZYWOadbHwvpjEarAnfCxolutJupmDGsYhmrmBbqwRnqww3Q3EaXjS4~U7INkJgylM9ltvodfYkcuaojrQRw6ewgHq323YFb4qreQbXjOVMd6TdzF6CN-Z~gc~obRUcToqKWAeSlBoIfO6m4yvauWiQW-EO2sWd~SqIjoD~YfwadRVTdiIaeR~RLBttoMQY5C~pS4LqXJ26svQwmLP9TrAljnROXnr6~3wBOsW6CGsuPzWhhdU9A9Mpd2ECGVAUHKYWkLMSF2s0vEj61oVr5S2e5BXNlAuP8gs9zA0gt1lAOiv~7GMpRC7896b6Q__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
M. Pundir and J. K. Sandhu, “A Systematic Review of Quality of Service in Wireless Sensor Networks using Machine Learning: Recent Trend and Future Vision,” J. Netw. Comput. Appl., vol. 188, p. 103084, Aug. 2021, doi: 10.1016/j.jnca.2021.103084.
W. M. H. Azamuddin, R. Hassan, A. H. M. Aman, M. K. Hasan, and A. S. Al-Khaleefa, “Quality of Service (QoS) Management for Local Area Network (LAN) Using Traffic Policy Technique to Secure Congestion,” Computers, vol. 9, no. 2, Art. no. 2, Jun. 2020, doi: 10.3390/computers9020039.
T. Mazhar et al., “Quality of Service (QoS) Performance Analysis in a Traffic Engineering Model for Next-Generation Wireless Sensor Networks,” Symmetry, vol. 15, no. 2, Art. no. 2, Feb. 2023, doi: 10.3390/sym15020513.
A. A. Khan et al., “QoS-Ledger: Smart Contracts and Metaheuristic for Secure Quality-of-Service and Cost-Efficient Scheduling of Medical-Data Processing,” Electronics, vol. 10, no. 24, Art. no. 24, Jan. 2021, doi: 10.3390/electronics10243083.
V. Y. P. Ardhana and M. D. Mulyodiputro, “Analisis Quality of Service (QoS) Jaringan Internet Universitas Menggunakan Metode Hierarchical Token Bucket (HTB),” J. Inform. Manag. Inf. Technol., vol. 3, no. 2, Art. no. 2, Apr. 2023, doi: 10.47065/jimat.v3i2.257.
DOI: https://doi.org/10.33387/jiko.v7i1.7785
Refbacks
- There are currently no refbacks.