DETECTION OF LIKURAI DANCE MOVEMENT TYPES IN MALAKA REGENCY USING YOLOV8 BASED ON VIDEO
Abstract
Indonesia is rich in traditional dances from every region, including the Likurai Dance, originating from East Nusa Tenggara, specifically in Malaka and Belu districts. This dance carries deep symbolic and historical meaning; however, it is currently threatened by lifestyle changes and globalization. Despite this, accurately and in real-time recognizing Likurai Dance movements remains challenging, particularly in detecting the specific dance movements. This research aims to test the effectiveness of detecting three types of Likurai Dance movements using documented digital video. The detection model is the YOLOv8 algorithm, known for detecting objects quickly and accurately. A YOLOv8-based platform is proposed to detect these dance movements precisely. In the testing, the YOLOv8 model demonstrated outstanding performance, achieving a very high mAP of 99.5% for the Wesei Wehali movement, 99.4% for the Be Tae Be Tae movement, and 99.1% for the Tebe Re movement. These results indicate that the model can detect dance movements with exceptional accuracy, precision, and recall rates above 98%. This research concludes that YOLOv8 has excellent potential in detecting traditional dance movements with high accuracy. These findings are significant for preserving and documenting the Likurai Dance and provide an educational means for younger generations to understand better and appreciate traditional cultural values.
Full Text:
PDFReferences
C. Seran and A. Bere, ‘Upaya Pewarisan Tradisi Tarian Likurai Sebagai Salah Satu Bentuk Kearifan Lokal di Kabupaten Malaka’, Jurnal Kajian Penelitian Pendidikan dan Kebudayaan, vol. 2, no. 1, pp. 149–162, 2024.
H. Rahman and D. Anggraeni, ‘Cultural Adaptation and Modernization: The Changing Landscape of Traditional Dances in Indonesia’, Indonesian Cultural Studies Journal, pp. 98–112, 2020.
M. Marselina Aderita Telik, G. Amanda Bele, E. Dolorosa Taek, and S. Keuskupan Agung Kupang, ‘MAKNA TARIAN LIKURAI DALAM PERAYAAN EKARISTI BAGI ORANG MUDA KATOLIK DI STASI SANTO FRANSISCO MARCO DE FATIMA NAILERA PAROKI SANTO FRANSISKUS XAVERIUS BOLAN’, 2021.
R. Totos, ‘Tarian Likurai sebagai simbol Penyambutan Tamu Di kabupaten malaka’, 2023.
E. L. Guntar, ‘Promosi Pariwisata Budaya Kabupaten Malaka-NTT dalam Novel Likurai Untuk Sang Mempelai Karangan Robertus Fahik’, Majalah Ilmiah Widyacakra, vol. 4, no. 1, pp. 26–41, 2021.
N. L. Kehi, D. B. W. Pandie, and C. V Adam, ‘PERAN PKK (PEMBERDAYAAN KESEJAHATERAAN KELUARGA) DALAM MELESTARIKAN TENUN IKAT DIDESA MOTAULUN KECAMATAN MALAKA BARAT KABUPATEN MALAKA’, Jurnal Administrasi Publik, vol. 18, no. 2, pp. 32–41, 2023.
F. Yudhistira, ‘Modernization and Its Impact on Traditional Dance Forms in Indonesia’, Asian Journal of Arts and Culture, pp. 87–97, 2020.
R. Turner and M. M. Chew, ‘Heritage and Globalization: Changing Paradigms and New Approaches’, Journal of Heritage Tourism, pp. 213–230, 2019.
A. Bochkovskiy, C.-Y. Wang, and M. H.-Y. Liao, ‘YOLOv4: Optimal Speed and Accuracy of Object Detection’, 2020.
A. S. E. Utami and D. Ariatmanto, ‘Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur’, J-SAKTI (Jurnal Sains Komputer dan Informatika), vol. 7, no. 2, pp. 891–901, 2023.
H. Kao, ‘Multi-person dance tiered posture recognition with cross progressive multiresolution representation integration’, PLoS One, vol. 19, no. 6 June, Jun. 2024, doi: 10.1371/journal.pone.0300837.
Y. Pang and Y. Niu, ‘Dance Video Motion Recognition Based on Computer Vision and Image Processing’, Applied Artificial Intelligence, vol. 37, no. 1, 2023, doi: 10.1080/08839514.2023.2226962.
Yovi Apridiansyah, Wijaya, Ardi, Pahrizal, Rozali Toyib, and Arif Setiawan, ‘Pengolahan Citra Berbasis Video Proccesing dengan Metode Frame Difference untuk Deteksi Gerak’, Journal of Applied Computer Science and Technology, vol. 5, no. 1, pp. 81–89, Jun. 2024, doi: 10.52158/jacost.v5i1.790.
Z. Ji and Y. Tian, ‘IOT BASED DANCE MOVEMENT RECOGNITION MODEL BASED ON DEEP LEARNING FRAMEWORK’, Scalable Computing, vol. 25, no. 2, pp. 1091–1106, 2024, doi: 10.12694/scpe.v25i2.2651.
N. Dwi Grevika Drantantiyas et al., ‘Performasi Deteksi Jumlah Manusia Menggunakan YOLOv8’, 2023, [Online]. Available: https://universe.roboflow.com/csgo-head-detection/head-datasets
D. D. Karyanto, D. D. Karyanto, J. Indra, A. R. Pratama, and T. Rohana, ‘DETECTION OF THE SIZE OF PLASTIC MINERAL WATER BOTTLE WASTE USING THE YOLOV5 METHOD’, JIKO (Jurnal Informatika dan Komputer), vol. 7, no. 2, pp. 123–130, Aug. 2024, doi: 10.33387/jiko.v7i2.8535.
DOI: https://doi.org/10.33387/jiko.v7i3.8815
Refbacks
- There are currently no refbacks.