CLASSIFICATION OF BONE FRACTURES IN THE WRIST AND HAND USING DENSENET AND XCEPTION

Michelle Swastika Bianglala Nusantara, Daniel Martomanggolo Wonohadidjojo

Abstract


This study aims to apply Convolutional Neural Network (CNN) using DenseNet and Xception to classify fracture in the wrist and hand bones, while utilizing transfer learning to enhance model's performance. Accurate diagnosis and successful treatment of bone fractures depend on early identification, which lowers the likelihood of long-term issues such avascular necrosis or non-union. The research utilized data from two publicly available musculoskeletal radiography datasets and employed deep learning techniques with the Keras framework. DenseNet was selected for wrist image analysis due to its dense connectivity, which preserves information from previous layers, while Xception was chosen for hand bone image analysis because of its ability to identify complex patterns using depthwise separable convolutions. Transfer learning was implemented to accelerate training and improve accuracy. The DenseNet model achieved a test accuracy of 97.5% for wrist classification, while the Xception model reached 92% accuracy for hand bone classification. By tailoring CNN architectures to specific radiographic images and employing transfer learning, this study demonstrates significant potential for improving diagnostic precision in clinical situations. Furthermore, the findings can support medical personnel in detecting bone fractures more efficiently and accurately, ultimately expediting clinical decision-making and improving patient care.

Full Text:

PDF

References


“Musculoskeletal health.†Accessed: Nov. 10, 2024. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions

F. Costa et al., “Digital rehabilitation for hand and wrist pain: a single-arm prospective longitudinal cohort study,†PAIN Rep., vol. 7, no. 5, p. e1026, Sep. 2022, doi: 10.1097/PR9.0000000000001026.

J. Zhang et al., “Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures,†Front. Med., vol. 10, p. 1224489, Aug. 2023, doi: 10.3389/fmed.2023.1224489.

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,†Insights Imaging, vol. 9, no. 4, pp. 611–629, Aug. 2018, doi: 10.1007/s13244-018-0639-9.

S. Solikhun, A. P. Windarto, and P. Alkhairi, “Bone fracture classification using convolutional neural network architecture for high-accuracy image classification,†Int. J. Electr. Comput. Eng. IJECE, vol. 14, no. 6, Art. no. 6, Dec. 2024, doi: 10.11591/ijece.v14i6.pp6466-6477.

P. Kora et al., “Transfer learning techniques for medical image analysis: A review,†Biocybern. Biomed. Eng., vol. 42, no. 1, pp. 79–107, Jan. 2022, doi: 10.1016/j.bbe.2021.11.004.

I. Kandel, M. Castelli, and A. PopoviÄ, “Musculoskeletal Images Classification for Detection of Fractures Using Transfer Learning,†J. Imaging, vol. 6, no. 11, p. 127, Nov. 2020, doi: 10.3390/jimaging6110127.

S. Gupta and D. Sharma, “Bone Fracture Classification using Transfer Learning,†Jun. 22, 2024, arXiv: arXiv:2406.15958. Accessed: Nov. 10, 2024. [Online]. Available: http://arxiv.org/abs/2406.15958

T. Meena and S. Roy, “Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift,†Diagnostics, vol. 12, no. 10, p. 2420, Oct. 2022, doi: 10.3390/diagnostics12102420.

P. Rajpurkar et al., “MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs.†arXiv, May 22, 2018. Accessed: Nov. 10, 2024. [Online]. Available: http://arxiv.org/abs/1712.06957

H. Malik, “Wrist Fracture - X-rays.†Mendeley, Oct. 07, 2020. doi: 10.17632/XBDSNZR8CT.1.

M. Kutbi, “Artificial Intelligence-Based Applications for Bone Fracture Detection Using Medical Images: A Systematic Review,†Diagnostics, vol. 14, no. 17, p. 1879, Aug. 2024, doi: 10.3390/diagnostics14171879.

T. Anwar and H. Anwar, “LSNet: a novel CNN architecture to identify wrist fracture from a small X-ray dataset,†Int. J. Inf. Technol., vol. 15, no. 5, pp. 2469–2477, Jun. 2023, doi: 10.1007/s41870-023-01311-w.

U. Kuran, E. C. Kuran, and M. B. Er, “Parameter Selection of Contrast Limited Adaptive Histogram Equalization Using Multi-Objective Flower Pollination Algorithm,†in Electrical and Computer Engineering, vol. 436, M. N. Seyman, Ed., in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 436. , Cham: Springer International Publishing, 2022, pp. 109–123. doi: 10.1007/978-3-031-01984-5_9.

Md. R. Islam and Md. Nahiduzzaman, “Complex features extraction with deep learning model for the detection of COVID19 from CT scan images using ensemble based machine learning approach,†Expert Syst. Appl., vol. 195, p. 116554, Jun. 2022, doi: 10.1016/j.eswa.2022.116554.

Nurhidayah, B. Abdul Samad, and B. Abdullah, “Perbandingan Metode Contrast Enhancement pada Citra CT-Scan Kanker Paru-paru,†Gravitasi, vol. 19, no. 2, pp. 24–28, Dec. 2020, doi: 10.22487/gravitasi.v19i2.15360.

S. I. Sahidan, M. Y. Mashor, A. S. W. Wahab, Z. Salleh, and H. Ja’afar, “Local and Global Contrast Stretching For Color Contrast Enhancement on Ziehl-Neelsen Tissue Section Slide Images,†in 4th Kuala Lumpur International Conference on Biomedical Engineering 2008, vol. 21, N. A. Abu Osman, F. Ibrahim, W. A. B. Wan Abas, H. S. Abdul Rahman, and H.-N. Ting, Eds., in IFMBE Proceedings, vol. 21. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 583–586. doi: 10.1007/978-3-540-69139-6_146.

Computer Engineering, Sriwijaya University, Indralaya, Indonesia and Erwin, “Improving Retinal Image Quality Using the Contrast Stretching, Histogram Equalization, and CLAHE Methods with Median Filters,†Int. J. Image Graph. Signal Process., vol. 12, no. 2, pp. 30–41, Apr. 2020, doi: 10.5815/ijigsp.2020.02.04.

C.-F. W. Ron Kikinis and H. Knutsson, “Adaptive Image Filtering,†in Handbook of Medical Imaging, Elsevier, 2000, pp. 19–31. doi: 10.1016/B978-012077790-7/50005-9.

R. K. Patel and M. Kashyap, “Automated diagnosis of COVID stages from lung CT images using statistical features in 2-dimensional flexible analytic wavelet transform,†Biocybern. Biomed. Eng., vol. 42, no. 3, pp. 829–841, Jul. 2022, doi: 10.1016/j.bbe.2022.06.005.

A. Majumder, A. Rajbongshi, Md. M. Rahman, and A. A. Biswas, “Local Freshwater Fish Recognition Using Different CNN Architectures with Transfer Learning,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 3, pp. 1078–1083, Jun. 2021, doi: 10.18517/ijaseit.11.3.14134.

F. A. Wicaksana, E. Mulyana, S. Hidayat, and R. Yusuf, “Design and Implementation Submarine Cable Object Detection YOLOv4 based with Graphical User Interface (GUI) for Remotely Operated Vehicle (ROV),†Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 9, 2023, doi: 10.14569/IJACSA.2023.01409101.




DOI: https://doi.org/10.33387/jiko.v8i1.9201

Refbacks

  • There are currently no refbacks.