COMPARISON OF ROBUSTNESS TEST RESULTS OF THE EYE ASPECT RATIO METHOD AND IRIS-SCLERA PATTERN ANALYSIS TO DETECT DROWSINESS WHILE DRIVING

Risky Aditia, Sriani Sriani

Abstract


Traffic accidents caused by driver drowsiness are a leading factor in fatal road incidents. This study introduces a computer vision-based drowsiness detection system utilizing two methods: Eye Aspect Ratio (EAR) and Iris-Sclera Pattern Analysis (ISPA). The EAR method measures the eye aspect ratio to determine whether the eyes are open or closed. This involves calculating the vertical distance between specific landmark points on the eyelids and comparing it to the horizontal distance between points on the eye. A decrease in this ratio serves as an early indicator of drowsiness. The ISPA method employs symmetry analysis between the iris and sclera. This approach relies on the visual pattern formed when the eyes are open, where the sclera appears symmetrically distributed around the iris. During this process, eye images are processed to extract iris and sclera features, which are then analyzed for symmetry to detect signs of drowsiness. The study evaluates the reliability of both methods under varying conditions, such as changes in lighting, viewing distances, head movements, and the use of eyeglasses. The results show that the EAR method achieved an accuracy of 83.33% in distance testing, indicating its effectiveness in stable lighting environments. In contrast, the ISPA method achieved an accuracy of 59.25% under low and variable lighting conditions and proved more reliable for detecting the eyes of users wearing glasses.


Full Text:

PDF

References


S. Djaja, R. Widyastuti, K. Tobing, D. Lasut, and J. Irianto, “Situasi Kecelakaan Lalu Lintas Di Indonesia, Tahun 2010-2014,†J. Ekol. Kesehat., vol. 15, no. 1, pp. 30–42, 2016, doi: 10.22435/jek.v15i1.4436.30-42.

C. W. Chuang and C. P. Fan, “Deep-learning based joint iris and sclera recognition with yolo network for identity identification,†J. Adv. Inf. Technol., vol. 12, no. 1, pp. 60–65, 2021, doi: 10.12720/jait.12.1.60-65.

A. K. Biswal, D. Singh, B. K. Pattanayak, D. Samanta, and M. H. Yang, “IoT-based smart alert system for drowsy driver detection,†Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/6627217.

K. Nguyen, H. Proença, and F. Alonso-Fernandez, “Deep Learning for Iris Recognition: A Survey,†ACM Comput. Surv., vol. 56, no. 9, 2024, doi: 10.1145/3651306.

J. R. Malgheet, N. B. Manshor, and L. S. Affendey, “Iris Recognition Development Techniques: A Comprehensive Review,†Complexity, vol. 2021, 2021, doi: 10.1155/2021/6641247.

D. K. Putra, R. Cahya Wihandika, and A. Ridok, “Ekstraksi Ciri Corner Triangle Similarity dan Eye Aspect Ratio untuk Deteksi Tatapan Mata Delapan Arah,†vol. 6, no. 4, pp. 1848–1857, 2022, [Online]. Available: http://j-ptiik.ub.ac.id

R. T. Puteri and F. Utaminingrum, “Deteksi Kantuk Menggunakan Kombinasi Haar Cascade dan Convolutional Neural Network,†J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 3, pp. 816–821, 2020, [Online]. Available: http://j-ptiik.ub.ac.id

S. Sugeng and T. N. Nizar, “Deteksi Aktivitas Mata, Mulut Dan Kemiringan Kepala Sebagai Fitur Untuk Deteksi Kantuk Pada Pengendara Mobil,†Komputika J. Sist. Komput., vol. 12, no. 1, pp. 83–91, 2023, doi: 10.34010/komputika.v12i1.9688.

I. A. Ahmed et al., “Eye Tracking-Based Diagnosis and Early Detection of Autism Spectrum Disorder Using Machine Learning and Deep Learning Techniques,†Electron., vol. 11, no. 4, 2022, doi: 10.3390/electronics11040530.

I. P. A. E. D. Udayana, N. P. E. Kherismawati, and I. G. I. Sudipa, “Detection of Student Drowsiness Using Ensemble Regression Trees in Online Learning During a COVID-19 Pandemic,†Telematika, vol. 19, no. 2, p. 229, 2022, doi: 10.31315/telematika.v19i2.7044.

M. A. Puspasari, “Analisis Pengaruh Chronotype dan Body Mass Index (BMI) terhadap Tingkat Kantuk Pengemudi,†J. Rekayasa Sist. Ind., vol. 12, no. 1, pp. 105–112, 2023, doi: 10.26593/jrsi.v12i1.6546.105-112.

M. A. Mulya, Zaenul Arif, and Syefudin, “Tinjauan Pustaka Sistematis : Penerapan Metode Gabor Wavelet Pada Computer Vision,†J. Comput. Sci. Technol., vol. 1, no. 2, pp. 83–88, 2023, doi: 10.59435/jocstec.v1i2.78.

R. P. H. Sejati and R. Mardhiyyah, “Deteksi Wajah Berbasis Facial Landmark Menggunakan OpenCV Dan Dlib,†J. Teknol. Inf., vol. 5, no. 2, pp. 144–148, 2021, doi: 10.36294/jurti.v5i2.2220.

M. M. Lawal, “Car Plate Number Detection System Using OpenCV,†vol. 11, no. 3, pp. 359–364, 2023.

T. C. A.-S. Zulkhaidi and E. Maria, “Pengenalan Pola Bentuk Wajah dengan OpenCV,†Jurti, vol. 3, no. 2, pp. 181–186, 2019.




DOI: https://doi.org/10.33387/jiko.v7i3.9239

Refbacks

  • There are currently no refbacks.