TRANSFORMER WITH LAGGED FEATURES FOR HANDLING LONG-TERM DATA DEPENDENCY IN TIME SERIES FORECASTING

Eko Verianto, Annisa Fikria Shimbun

Abstract


Data with long-term dependencies plays an important role in time series forecasting. However, studying data with long-term dependencies in time series data presents challenges for most algorithms. While some algorithms can forecast time series data, not all can model data with long-term dependencies effectively. The algorithm typically used for forecasting data with long-term dependencies is Long Short-Term Memory (LSTM), but LSTM can still face vanishing gradient issues, making it difficult to identify long-term dependencies in very long datasets. Another algorithm used for forecasting long-term time series data is the transformer. However, this algorithm has not yet shown better performance compared to simple linear models. The goal of this research is to develop an effective solution for forecasting time series data with long-term dependencies. The approach proposed in this research is the transformer with lagged features and also using time series cross-validation techniques. The results of this study show the performance of the transformer model in MAPE per fold on the BBCA stock dataset with a lag=5 and fold=5 configuration as follows: 0.0390, 0.0329, 0.0207, 0.0554, 0.0423. On the USD/IDR exchange rate dataset, the results are 0.0273, 0.0431, 0.0498, 0.0236, 0.237. The results of each fold are inconsistent and show unstable performance, indicating that the transformer with lagged features and using time series cross-validation techniques has not yet been able to provide its best performance in long-term time series forecasting.


Full Text:

PDF

References


A. K. Sharma and D. P. S. Shanmugaboopathi, “Digital Revolution and Its Nature and Extent in the Contemporary World,†Technoarete Trans. Adv. Soc. Sci. Humanit., vol. 2, no. 4, pp. 27–32, 2022, doi: 10.36647/ttassh/02.04.a005.

C. Stach, “Data Is the New Oil–Sort of: A View on Why This Comparison Is Misleading and Its Implications for Modern Data Administration,†Futur. Internet, vol. 15, no. 2, pp. 1–49, 2023, doi: 10.3390/fi15020071.

A. W. Saputra, A. P. Wibawa, U. Pujianto, A. B. P. Utama, and A. Nafalski, “LSTM-based Multivariate Time-Series Analysis: A Case of Journal Visitors Forecasting,†Ilk. J. Ilm., vol. 14, no. 1, pp. 57–62, 2022, doi: 10.33096/ilkom.v14i1.1106.57-62.

D. P. Khairunnisa, N. Halwatunnissa, and D. H. Nurdiansyah, “Analysis Forecasting of Operational Expense of PT. Bank Rakyat Indonesia (Persero) Tbk,†Eqien - J. Ekon. dan Bisnis, vol. 9, no. 2, pp. 480–487, 2022.

C. Ubal, G. Di-Giorgi, J. E. Contreras-Reyes, and R. Salas, “Predicting the Long-Term Dependencies in Time Series Using Recurrent Artificial Neural Networks,†Mach. Learn. Knowl. Extr., vol. 5, no. 4, pp. 1340–1358, 2023, doi: 10.3390/make5040068.

S. M. Al-Selwi, M. F. Hassan, S. J. Abdulkadir, and A. Muneer, “LSTM Inefficiency in Long-Term Dependencies Regression Problems,†J. Adv. Res. Appl. Sci. Eng. Technol., vol. 30, no. 3, pp. 16–31, 2023, doi: 10.37934/araset.30.3.1631.

A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are Transformers Effective for Time Series Forecasting?,†Proc. 37th AAAI Conf. Artif. Intell. AAAI 2023, vol. 37, pp. 11121–11128, 2023, doi: 10.1609/aaai.v37i9.26317.

X. Ma, Z. Liu, M. Zheng, and Y. Wang, “Application and exploration of self-attention mechanism in dynamic process monitoring,†IFAC-PapersOnLine, vol. 55, no. 6, pp. 139–144, 2022, doi: 10.1016/j.ifacol.2022.07.119.

R. Akbar, R. A. Siroj, M. Win Afgani, and Weriana, “Experimental Reseacrch Dalam Metodologi Pendidikan,†J. Ilm. Wahana Pendidik., vol. 9, no. 2, pp. 465–474, 2023, [Online]. Available: https://jurnal.peneliti.net/index.php/JIWP/article/view/3165

S. Sukmawati, S. Sudarmin, and S. Salmia, “Development of Quality Instruments and Data Collection Techniques,†J. Pendidik. dan Pengajaran Guru Sekol. Dasar, vol. 6, no. 1, pp. 119–124, 2023, doi: 10.55215/jppguseda.v6i1.7527.

R. R. Salam, M. F. Jamil, Y. Ibrahim, R. Rahmaddeni, S. Soni, and H. Herianto, “Analisis Sentimen Terhadap Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM) Menggunakan Support Vector Machine,†MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 1, pp. 27–35, 2023, doi: 10.57152/malcom.v3i1.590.

M. R. Ismail, A. Zain, J. Jamaludin, F. Dewantoro, and D. Pratiwi, “Perhitungan Data Curah Hujan yang Hilang dengan Menggunakan Metode Interpolasi Linier,†J. Tek. Sipil Sendi, vol. 4, no. 2, pp. 60–66, 2023.

M. R. Suherlan, A. Asriyanik, and A. Pambudi, “UMMIBOT sebagai Media Layanan Informasi Penerimaan Mahasiswa Baru Universitas Muhammadiyah Sukabumi,†J. Inform. Terpadu, vol. 9, no. 2, pp. 82–91, 2023.

E. Sokolova, O. Ivarsson, A. Lillieström, N. K. Speicher, H. Rydberg, and M. Bondelind, “Data-driven models for predicting microbial water quality in the drinking water source using E. coli monitoring and hydrometeorological data,†Sci. Total Environ., vol. 802, 2022, doi: 10.1016/j.scitotenv.2021.149798.

N. H. Setiawan and Z. Zulkarnain, “Forecasting Palm Oil Production using Long Short-term Memory (LSTM) with Time Series Cross Validation (TSCV),†Int. J. Soc. Serv. Res., vol. 04, no. 05, pp. 1237–1251, 2024.

W. Gu et al., “Predicting Stock Prices with FinBERT-LSTM: Integrating News Sentiment Analysis,†in Proceedings of the 2024 8th International Conference on Cloud and Big Data Computing, 2024, pp. 67–72. doi: 10.1145/3694860.3694870.




DOI: https://doi.org/10.33387/jiko.v7i3.9247

Refbacks

  • There are currently no refbacks.