Smart System Solutions in Wind Power Plants

Widodo Hadi Prabowo, Firdaus Firdaus, Sisdarmanto Adinandra

Abstract


Wind Power Plants (WPP) have great potential as an environmentally friendly renewable energy source. However, in its operations, WPP faces a number of challenges, especially related to monitoring, detection, and optimizing system performance. This research aims to implement an intelligent system that combines internet of things (IoT), machine learning (ML), and artificial intelligence (AI) technology to improve the performance of WPP. The methodology used includes real-time monitoring with the help of sensors, as well as the application of machine learning to detect faults early and monitor energy production transmission. Through  a systematic literature review approach, this study examines various relevant literature in the development of smart systems for WPP. The results show that the use of IoT and machine learning can increase monitoring efficiency by up to 95%, with damage prediction accuracy reaching 99.24%, and energy efficiency improvement by 87%. Maximum Power Point Tracking (MPPT) and Fuzzy Logic Controller (FLC) technology also play a role in optimizing energy conservation. In conclusion, the application of smart systems in WPP not only improves operational efficiency and accelerates damage detection, but also supports the transition to more sustainable renewable energy. This study recommends further development of this technology, in order to strengthen the stability and dryness of energy supply.


Keywords


smart system; WPP; machine learning; aritificial intelligence

Full Text:

PDF

References


A. H. Abdel-Aty, K. S. Nisar, W. R. Alharbi, S. Owyed, and M. H. Alsharif, “Boosting wind turbine performance with advanced smart power prediction: Employing a hybrid ARMA-LSTM technique,” Alexandria Eng. J., vol. 96, no. February, pp. 58–71, 2024, doi: 10.1016/j.aej.2024.03.078.

M. Azhari and D. Corio, “Sistem Monitoring Horizontal Axial Wind Turbine (HAWT) Berbasis Internet Of Things,” Elektron J. Ilm., vol. 14, pp. 13–20, 2022, doi: 10.30630/eji.14.1.272.

J. Yang, L. Peng, L. Luo, and T. Yang, “Control Strategy for Energy-Storage Systems to Smooth Wind Power Fluctuation Based on Interval and Fuzzy Control,” IEEE Access, vol. 11, no. December 2022, pp. 20979–20993, 2023, doi: 10.1109/ACCESS.2023.3251113.

M. Fahim, V. Sharma, T. V. Cao, B. Canberk, and T. Q. Duong, “Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines,” IEEE Access, vol. 10, pp. 14184–14194, 2022, doi: 10.1109/ACCESS.2022.3147602.

J. Wang, L. Cheng, L. Feng, K. Y. Lin, L. Zhang, and W. Zhao, “Tracking and predicting technological knowledge interactions between artificial intelligence and wind power: Multimethod patent analysis,” Adv. Eng. Informatics, vol. 58, no. June, p. 102177, 2023, doi: 10.1016/j.aei.2023.102177.

M. E. Putra, Z. Amin, I. Islahuddin, and S. Ardhy, “Rancang Bangun Sistem Kontrol dan Monitoring Data Turbin Angin Berbasis Website Menggunakan Raspberry Pi 3B+,” Met. J. Sist. Mek. dan Termal, vol. 4, no. 2, p. 70, 2020, doi: 10.25077/metal.4.2.70-81.2020.

Z. Wu, B. Sun, Q. Feng, Z. Wang, and J. Pan, “Physics-Informed AI Surrogates for Day-Ahead Wind Power Probabilistic Forecasting with Incomplete Data for Smart Grid in Smart Cities,” C. - Comput. Model. Eng. Sci., vol. 137, no. 1, pp. 527–554, 2023, doi: 10.32604/cmes.2023.027124.

M. Principato, L. Hasselwander, M. Stangner, and R. Buettner, “Unlocking the Potential of Wind Energy with Machine Learning-Based Avian Detection: A Call to Action,” IEEE Access, vol. 11, no. June, pp. 64026–64048, 2023, doi: 10.1109/ACCESS.2023.3287861.

A. Ali et al., “Advancements in energy harvesting techniques for sustainable IoT devices,” Results Eng., vol. 26, no. April, 2025, doi: 10.1016/j.rineng.2025.104820.

P. Sudhakar, N. K. Kamble, G. K, A. V. Turukmane, S. B. Perli, and J. P, “Faulty diagnostics model for wind power plant application using AI,” Meas. Sensors, vol. 25, no. August 2022, p. 100621, 2023, doi: 10.1016/j.measen.2022.100621.

A. Jasmine Gnana Malar, C. Agees Kumar, and A. Gnana Saravanan, “Iot based sustainable wind green energy for smart cites using fuzzy logic based fractional order darwinian particle swarm optimization,” Meas. J. Int. Meas. Confed., vol. 166, p. 108208, 2020, doi: 10.1016/j.measurement.2020.108208.

A. Hassan, G. Ahmad, M. Shafiullah, A. Islam, and M. S. Alam, “Review of the Intelligent Frameworks for Pitch Angle Control in Wind Turbines,” IEEE Access, vol. 13, no. January, 2025, doi: 10.1109/ACCESS.2025.3540367.

I. Pakere, M. Kacare, A. Grāvelsiņš, R. Freimanis, and A. Blumberga, “Spatial analyses of smart energy system implementation through system dynamics and GIS modelling. Wind power case study in Latvia,” Smart Energy, vol. 7, no. December 2021, 2022, doi: 10.1016/j.segy.2022.100081.

M. Z. Abdulah, A. Rahmadani, D. E. Anyeler, G. Setyaji, and M. F. Gunawan, “SWINDU (Smart Farming dengan Wind Turbine) Rancang Bangun Wind Turbine Sederhana berbasis ESP32 untuk Smart Farming Deteksi Kelembapan Tanah pada Sayuran Pokcoy,” Aisyah J. Informatics Electr. Eng., vol. 6, no. 2, pp. 213–218, 2024, doi: 10.30604/jti.v6i2.268.

C. Emexidis and P. Gkonis, “The Integration of Internet of Things and Machine Learning for Energy Prediction of Wind Turbines,” Appl. Sci., vol. 14, no. 22, 2024, doi: 10.3390/app142210276.

X. Liu, X. Xie, Z. Shan, and M. Han, “Wind Vector Measurement Based on Three Mutually Transmitting Ultrasonic Sensors,” Taiyangneng Xuebao/Acta Energiae Solaris Sin., vol. 44, no. 9, pp. 411–417, 2023, doi: 10.1109/LGRS.2023.3236005.

S. Gaikwad, R. Sande, S. Bochare, D. Chalkapure, and S. Jawale, “IOT based Weather Sensing and Monitoring Station,” SSRN Electron. J., 2023, doi: 10.2139/ssrn.4666488.

H. Zia, Ullah; Ghassan, I. Mohmand; Muhammad, Y. Ghadi; Khalid, J. Alzahrani; Yazeed, and K. Alkahtani; Hend, “IET Communications - 2024 - Ullah - Blockchain‐IoT A revolutionary model for secure data storage and fine‐grained access.pdf,” 2024. doi: 10.1049/cmu2.12845.

K. L. Gyan, Anand;Ravi, Sharma; Ravi Sharma; Sheersh, “IOT SYSTEM FOR RENEWABLE ENERGY RESOURCE,” pp. 208–234.

A. Laksana, S. Sutisna, and F. M. S. Nursuwars, “KONTROL SISTEM CHARGING PEMBANGKIT LISTRIK TENAGA BAYU PT. LENTERA BUMI NUSANTARA BERBASIS INTERNET of THINGS (IoT),” J. Energy Electr. Eng., vol. 3, no. 1, 2021, doi: 10.37058/jeee.v3i1.3390.

M. Berlian Sari, L. Yuliantini, M. Djamal, and H. Prihtiadi, “Easy monitoring and data record system of electric current detected by ACS712 affordable non-destructive electrical current sensor,” Physics (College. Park. Md)., vol. 13, no. 2, pp. 1–7, 2021, [Online]. Available: http://ejournal.unp.ac.id/students/index.php/fis/index

R. D. Karta, “Perancangan Alat Pendeteksi Kecepatan Serta Arah Mata Angin Dengan Menggunakan Hall Effect Sensor Dan Rotary Encorder Berbasis Iot,” J. Appl. Smart Electr. Netw. Syst., vol. 3, no. 01, pp. 33–36, 2022, doi: 10.52158/jasens.v3i01.202.

Fasha Nur Fauzan, Sri Utami, and Mulki Rezka Budi Pratama, “Monitoring Sistem Kelistrikan Tiga Fasa Berbasis IoT dengan Sensor ACS712 dan ZMPT101B,” J. Tek. Energi, vol. 13, no. 1, pp. 24–29, 2024, doi: 10.35313/.v13i1.5246.

Y. Fang, W. Chen, D. Zhang, and B. Zhao, “Neural network-based prediction of wind-induced responses in large-span air-supported membrane structures,” Thin-Walled Struct., vol. 209, no. November 2024, 2025, doi: 10.1016/j.tws.2024.112892.

M. Saleem, M. M. Saleem, F. Waseem, and M. A. Bashir, “An Ensemble Forecasting Method based on optimized LSTM and GRU for Temperature and Humidity Forecasting,” Eng. Technol. Appl. Sci. Res., vol. 14, no. 6, pp. 18447–18452, 2024, doi: 10.48084/etasr.9047.

H. Chen, Q. Zhang, and Y. Birkelund, “Machine learning forecasts of Scandinavian numerical weather prediction wind model residuals with control theory for wind energy,” Energy Reports, vol. 8, pp. 661–668, 2022, doi: 10.1016/j.egyr.2022.08.105.

T. Chambert, O. Duriez, M. Deleaux, and A. Besnard, “EolPop, a R-shiny tool for quantifying the demographic impact of species exposed to fatalities: Application to bird collisions with wind turbines,” J. Environ. Manage., vol. 345, no. June, 2023, doi: 10.1016/j.jenvman.2023.118923.

K. C. Lin, J. Y. Hsu, H. W. Wang, and M. Y. Chen, “Early fault prediction for wind turbines based on deep learning,” Sustain. Energy Technol. Assessments, vol. 64, no. 103, 2024, doi: 10.1016/j.seta.2024.103684.

T. C. Da Silva, F. A. Da Silva Antunes, J. C. Teixeira, and R. C. Contreras, “Correlation between Wind Turbine Failures and Environmental Conditions: A Machine Learning Approach,” IEEE Access, no. February, pp. 50043–50058, 2025, doi: 10.1109/ACCESS.2025.3551241.

B. Zhao, X. Li, Z. Li, M. You, and F. Xu, “Intelligent Fault Diagnosis of Wind Turbine Generator Bearings Using Acoustic Signals,” IEEE Access, vol. 12, no. August, pp. 135961–135972, 2024, doi: 10.1109/ACCESS.2024.3461966.

H. Yang, W. Yuan, W. Zhu, Z. Sun, Y. Zhang, and Y. Zhou, “Wind turbine airfoil noise prediction using dedicated airfoil database and deep learning technology,” Appl. Energy, vol. 364, no. March, p. 123165, 2024, doi: 10.1016/j.apenergy.2024.123165.

Karthik C and Priyanka Mohan, “Wind Power Generation Data Forecasting,” Int. J. Adv. Res. Sci. Commun. Technol., pp. 89–92, 2024, doi: 10.48175/ijarsct-22519.

P. Wu and Z. Li, “Optimized wind power prediction and energy storage scheduling using genetic algorithm and backpropagation neural network,” Int. J. Renew. Energy Dev., vol. 14, no. 1, pp. 146–157, 2025, doi: 10.61435/ijred.2025.60434.

K. T. Hilmi, “Department of Mechanical Engineering, Trakya University, Edirne, 22030, TR Türkiye Edirne Provincial Health Department, Ministry of Health, Edirne, 22030, TR Türkiye,” no. November, pp. 23–27, 2023.

Z. Tharo et al., “IMPROVEMENT METHOD BAYU POWER PLANT BASED ON ARTIFICIAL INTELLIGENT,” J. Crit. Rev., vol. 7, no. 9, 2020.

P. Studi, T. Elektronika, P. Dewantara, K. Palopo, and S. Selatan, “MELALUI CRITICAL CLEARING TIME YANG TERHUBUNG,” vol. XIII, no. 2, pp. 89–96, 2024, doi: 10.35508/jme.v13i2.18802.

C. Feng, Z. Mai, C. Wu, Y. Zheng, and N. Zhang, “Advantage of battery energy storage systems for assisting hydropower units to suppress the frequency fluctuations caused by wind power variations,” J. Energy Storage, vol. 78, no. June 2023, p. 109989, 2024, doi: 10.1016/j.est.2023.109989.

Y. Wang, A. Pei, M. Lei, Y. Ji, Z. Wang, and J. Zong, “Adaptive state-of-charge limit based optimal configuration method of battery energy storage system for offshore isolated power grids considering wind uncertainty and frequency stability,” J. Energy Storage, vol. 119, no. February, p. 116344, 2025, doi: 10.1016/j.est.2025.116344.

C. Wardana, I. S. Siswantoro, MT., and . D. S. S. T. . M. E., “Pengaruh Kontroler Maximum Power Point Tracking (Mppt) Terhadap Efisiensi Daya Vertical Axis Wind Turbine (Vawt) Tipe Savonius Dua Sudu,” J. Energi Baru dan Terbarukan, vol. 4, no. 3, pp. 209–223, 2023, doi: 10.14710/jebt.2023.19034.

P. Chen, D. Han, and K. C. Li, “Robust Adaptive Control of Maximum Power Point Tracking for Wind Power System,” IEEE Access, vol. 8, pp. 214538–214550, 2020, doi: 10.1109/ACCESS.2020.3039048.




DOI: https://doi.org/10.33387/protk.v13i1.10650

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Editorial Office :
Protek : Jurnal Ilmiah Teknik Elektro
Department of Electrical Engineering. Faculty of Engineering. Universitas Khairun.
Address: Jusuf Abdulrahman 53 Gambesi, Ternate City, Indonesia.
Email: protek@unkhair.ac.id, WhatsApp: +6282292852552
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View Stat Protek