Penerapan Metode Kendali Nonlinier Berbasis Sistem Servo pada Sistem Magnetic Levitation (Maglev)

Wira Fadlun

Abstract


Dalam mendesain sistem kendali maglev umumnya terkendala oleh dinamika sistem yang kompleks dan nonlinier sehingga dibutuhkan pemilihan metode yang tepat. Oleh karena itu, pada penelitian ini diajukan sebuah pemodelan sistem kendali  maglev dengan menerapkan salah satu metode nonlinier yaitu feedback linearization yang dikembangkan dengan mengadaptasi sistem servo yang dinamakan kendali servo-feedback linearization. Hasil pemodelan sistem diuji dengan simulasi menggunakan matlab simulink. Performa sistem kendali hasil pemodelan yang diajukan pada penelitian ini dibandingkan dengan performa kendali feedback linearization sederhana. Hasil simulasi sistem kendali dengan skenario tanpa pemberian gangguan (disturbance) menunjukkan kendali feedback linearization dan kendali servo-feedback linearization menunjukkan performa yang bagus. Sinyal output kedua sistem kendali dapat mengikuti sinyal input referensi (set point). Hasil simulasi sistem kendali dengan skenario dengan penambahan gangguan (disturbance) dalam bentuk sinyal step menunjukkan kendali feedback linearization memiliki performa yang kurang baik, kendali tersebut tidak dapat meredam gangguan, sebaliknya kendali servo-feedback linearization dapat meredam gangguan yang diberikan.

Keywords


magnetic levitation; sistem kendali; nonlinier

References


H. Khalil, Nonlinear Systems. Englewood Cliffs (N.J.): Prentice Hall, 2002.

Q. HU, Q. Fei, Q. Wu, and Q. Geng, “Research and application of nonlinear control techniques for quad rotor uav,†IEEE Chinese Control Conference, pp. 706–710, Jul 2012.

R.-J. Wai and L.-J. Chang, “Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique,†IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 674–692, April 2006.

Z.-J. Yang, S. Hara, S. Kanae, and K. Wada, “Robust output feedback control of a magnetic levitation system via high-gain observer,†IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp. 7575–7580, December 2009.

K. Qian, Z. Xu, and H. Wang, “Investigation on applying passive magnetic bearings to impeller left ventricular assist devices (lvad),†IEEE Biomedical Engineering and Informatics (BMEI), vol. 4, pp. 1526–1518, Okt. 2010.

H. Nadashima, “The superconducting magnet for the maglev transport system,†IEEE Trans. Magn., vol. 30, no. 6, pp. 1572–1578, 1994.

M. B. Khamesee, N. Kato, Y. Nomura, and T. Nakamura, “Design and control of a micro robotic system using magnetic levitation,†IEEE ASME Transactions on Mechatronics, vol. 7, pp. 1–14, Mar. 2002.

H. Bleuler, “A survey of magnetic levitation and magnetic bearing types,†JSME Int. J., vol. 35, pp. 335–342, Okt. 1992.

N. E. Al-Muthairi and M. Zribi, “Sliding mode control of a magnetic levitation system,†Hindawi Publishing Corporation: Mathematical Problems in Engineering, pp. 93–107, 2004.

Y. Khemissi, “Control using sliding mode of the magnetic suspension system,†International Journal of Electrical and Computer Sciences IJECS-IJENS, vol. 10, no. 3, pp. 1–5, 1-5 Juny 2010.

H. K. C. C. A. Chen and J. C. Shen, “Fuzzy sliding mode control of a magnetic ball suspension system,†International Journal of Fuzzy Systems, vol. 11, no. 2, pp. 97–106, Juny 2009.

Y. Zi-J and T. M, “Robust nonlinear control of a magnetic levitation system via backstepping approach,†IEEE, pp. 1063–1066, Jul 1998.

J. Li, J. Li, and P. Cui, “Mass adaptation of maglev levitation system based on feedback linearization,†10th IEEE International Conference on Control and Automation (ICCA), pp. 436–440, 12-14 June 2013.

T. Kumar, S. S.L., D. Karanjkar, and S. Rana, “Modeling, simulation and control of single actuator magnetic levitation system,†IEEE Recent Advances in Engineering and Computational Sciences (RAECS), pp. 1–6, 6-8 March 2014.

S. K. Pradhan and R. Singh, “Nonlinear control of a magnetic levitation system using feedback linearization,†IEEE International Conference on Advanced Communication Control and Computing Teclmologies (ICACCCT), pp. 152–156, 8-10 May 2014.

F. C. Moon, Superconducting Levitation : Applications to Bearings and Magnetic Transportation. Wiley-VCH Verlag GmbH and Co. KGaA, 2004.

I. Ahmad and M. A. Javaid, “Nonlinear model and controller design for magnetic levitation system,†RECENT ADVANCES in Signal Processing, Robotics And Automation, pp. 324–328, 2010.

V. Dolga and L. Dolga, “Modeling and simulation of a magnetic levitation system,†Annals of the Oradea University. Fascicle of Management and Technological Engineering, vol. VI, 2007.

J.-J. E. Slotine and W. Li, Applied nonlinear control. Englewood Cliffs (N.J.): Prentice Hall, 1991.

K. Ogata, Modern control engineering, ser. Prentice-Hall electrical engineering series. Englewood Cliffs (N.J.): Prentice-Hall, 1970.

R. Uswarman, A. I. Cahyadi, , and O. Wahyunggoro, “Control of a magnetic levitation system using feedback linearization,†IEEE International Conference on Computer, Control, Informatics and Its Applications, pp. 95–98, 19-21 Nov. 2013.




DOI: https://doi.org/10.33387/protk.v4i2.380

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Wira Fadlun





Editorial Office :
PROtek : Jurnal Ilmiah Teknik Elektro
Department of Electrical Engineering. Faculty of Engineering. Universitas Khairun.
Address: Jusuf Abdulrahman 53 Gambesi, Ternate City, Indonesia.
Email: protek@unkhair.ac.id, WhatsApp: +6282292852552
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

View Stat Protek