THE ABILITY OF WATER HYACINTH (Eichhornia crassipes) AS A BIOACCUMULATOR OF HEAVY METALS IN WASTEWATER FROM THE RUBBER PROCESSING INDUSTRY

Rusdi Hasan, Tia Setiawati, Nopriyeni Nopriyeni

Abstract


This study aimed to assess the ability of water hyacinth (Eichhornia crassipes) as a bioaccumulator of heavy metals copper (Cu) and zinc (Zn) in rubber industry wastewater at PT Batanghari, Bengkulu. The research methods included water and water hyacinth sampling from effluent ponds and controls, followed by analysis of Cu and Zn levels using atomic absorption spectrophotometry (AAS). Results showed that Zn levels in wastewater reached 143.0884 mg/l (28 times the quality standard), while Cu was 0.1845 mg/l (still below the quality standard). Water hyacinth accumulated metals in different patterns: Cu was highest in the roots (1.4480 mg/l), while Zn was evenly distributed in the roots (6.7261 mg/l) and leaves (6.6473 mg/l). Analysis of bioaccumulation (BAF) and translocation factors (TF) revealed the efficiency of water hyacinth in absorbing metals, especially Zn, although the absorption mechanism is selective and influenced by environmental conditions such as pH, dissolved oxygen, and the presence of organic compounds. The implications of this study emphasize the potential of water hyacinth as an economical and sustainable phytoremediation solution for the rubber industry, with recommendations of implementing a constructed wetland system and periodic harvesting for optimization.

Keywords


hyacinth; phytoremediation; zinc; copper

References


Abd-Elaal, A., Aboelkassem, A., Gad, A., & Ali, S. (2020). Removal of heavy metals from wastewater by natural growing plants on River Nile banks in Egypt. Water Practice and Technology, 15. https://doi.org/10.2166/wpt.2020.073

Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019(1), 6730305. https://doi.org/https://doi.org/10.1155/2019/6730305

Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yavaş, İ., Ünay, A., Abdel-DAIM, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12(5). https://doi.org/10.3390/su12051927

Aschner, M., Skalny, A. V, Lu, R., Martins, A. C., Tsatsakis, A., Miroshnikov, S. A., Santamaria, A., & Tinkov, A. A. (2024). Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chemico-Biological Interactions, 403, 111245. https://doi.org/https://doi.org/10.1016/j.cbi.2024.111245

Bisht, M. S., Singh, M., Chakraborty, A., & Sharma, V. K. (2024). Genome of the most noxious weed water hyacinth (Eichhornia crassipes) provides insights into plant invasiveness and its translational potential. IScience, 27(9), 110698. https://doi.org/10.1016/j.isci.2024.110698

Blakeborough, P., & Salter, D. N. (1987). The intestinal transport of zinc studied using brush-border-membrane vesicles from the piglet. British Journal of Nutrition, 57(1), 45–55. https://doi.org/DOI: 10.1079/BJN19870008

Brewer, G. (2010). Copper toxicity in the general population. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 121, 459–460. https://doi.org/10.1016/j.clinph.2009.12.015

Chabukdhara, M., & Nema, A. K. (2012). Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere, 87(8), 945–953. https://doi.org/10.1016/j.chemosphere.2012.01.055

Eldourghamy, A. S., Goher, M. E., Hagag, Y. M., & Rizk, N. M. H. (2024). Assessment of the water quality in the Damietta Branch of the Nile River, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 28(3), 1129–1157. https://doi.org/10.21608/ejabf.2024.361963

Fonseka, H. W. L., Gunatilake, S. K., Jayawardana, J. M. C. K., & Wijesekara, S. S. R. M. D. H. R. (2023). Analyzing The Efficacy of Salvinia molesta and Pistia stratiotes as Phytoremediation Agent for Heavy Metals. KDU Journal of Multidisciplinary Studies, 5(2), 33–44. https://doi.org/10.4038/kjms.v5i2.75

García Martín, J. F., González Caro, M. del C., López Barrera, M. del C., Torres García, M., Barbin, D., & Álvarez Mateos, P. (2020). Metal Accumulation by Jatropha curcas L. adult plants grown on heavy metal-contaminated soil. Plants, 9(4). https://doi.org/10.3390/plants9040418

Gupta, N., Ram, H., & Kumar, B. (2016). Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Bio/Technology, 15(1), 89–109. https://doi.org/10.1007/s11157-016-9390-1

Hacisalihoglu, G. (2020). Zinc (Zn): The Last Nutrient in the Alphabet and Shedding Light on Zn Efficiency for the Future of Crop Production under Suboptimal Zn. Plants, 9(11). https://doi.org/10.3390/plants9111471

Hakim, W. N., Pinem, J. A., & Saputra, E. (2016). Pengolahan limbah cair industri karet dengan kombinasi proses pretreatment dan membran ultrafiltrasi. Jom FTEKNIK, 3(1), 1–9.

Hu, C., Zhang, L., Hamilton, D., Zhou, W., Yang, T., & Zhu, D. (2007). Physiological responses induced by copper bioaccumulation in Eichhornia crassipes (Mart.). Hydrobiologia, 579(1), 211–218. https://doi.org/10.1007/s10750-006-0404-9

Impellitteri, C. A., Saxe, J. K., Cochran, M., Janssen, G. M. C. M., & Allen, H. E. (2003). Predicting the bioavailability of copper and zinc in soils: Modeling the partitioning of potentially bioavailable copper and zinc from soil solid to soil solution. Environmental Toxicology and Chemistry, 22(6), 1380–1386. https://doi.org/10.1002/etc.5620220626

Ismail, Z., & Beddri, A. (2008). Potential of water hyacinth as heavy metal removal agent from refinery effluents. Water, Air, and Soil Pollution, 199, 57–65. https://doi.org/10.1007/s11270-008-9859-9

KLHK. (2023). Laporan Kinerja KLHK 2023. Laporan kinerja ditjen tanaman pangan tahun 2022, 229. https://tanamanpangan.pertanian.go.id/assets/front/uploads/document/LAKIN DJTP 2022_UPDATE ATAP (2).pdf

Majeed, U., Ahmad, I., Hassan, M., & Mohamad, A. (2014). Phytoremedial potential of aquatic plants for heavy metals contaminated industrial effluent Phytoremedial Potential of Aquatic Plants for Heavy Metals Contaminated Industrial Effluent. European Academic Research, 2(6), 2014.

Nwe, M. L., Oo, T. K., & Mon, N. T. (2020). Phytoremediation efficiencies of water hyacinth in removing heavy metals in industrial wastewater. Environ Technol Sci J, 2(02), 191. https://doi.org/10.13140/RG.2.2.25831.16802

Ponnaiah, S. K., Prakash, P., & Balasubramanian, J. (2021). Effective and reliable platform for nonenzymatic nanomolar-range quinol detection in water samples using ceria doped polypyrrole nanocomposite embedded on graphitic carbon nitride nanosheets. Chemosphere, 271, 129533. https://doi.org/https://doi.org/10.1016/j.chemos-phere.2021.129533

Prabha, V. V., M, S. C., & M, S. D. (2024). Role of ZIP family transporters in zinc uptake and transport in plants: Implications for biofortification and zinc deficiency mitigation. Journal of Advances in Biology & Biotechnology, 27(12), 221–229. https://doi.org/10.9734/jabb/2024/v27i121769

Putriany, A., Widianingsih, W., Endrawati, H., & Hartati, R. (2023). Bioakumulasi logam berat Pb oleh Chlorella vulgaris. Buletin Oseanografi Marina, 12(3), 395–402. https://doi.org/10.14710/buloma.v12i3.39205

Rigueto, C. V. T., Piccin, J. S., Dettmer, A., Rosseto, M., Dotto, G. L., de Oliveira Schmitz, A. P., Perondi, D., de Freitas, T. S. M., Loss, R. A., & Geraldi, C. A. Q. (2020). Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecological Engineering, 150, 105817. https://doi.org/https://doi.org/10.1016/j.ecoleng.2020.105817

Tang, H., Xiang, G., Xiao, W., Yang, Z., & Zhao, B. (2024). Microbial mediated remediation of heavy metals toxicity: mechanisms and future prospects. Frontiers in Plant Science, 15, 1420408. doi: 10.3389/fpls.2024.1420408

Tayyiba, L., Zafar, H., Gondal, A. H., Farooq, Q., Mukhtar, M. M., Hussain, R., Aslam, N., Muzaffar, A., & Sattar, I. (2021). Efficiency of Zinc in plants, its deficiency and sensitivity for different crops. Current Research in Agricultural Sciences, 8(2), 128–134. https://doi.org/10.18488/journal.68.2021.82.128.134

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum (2012), 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

UNEP. (2023). Keeping the Promise - Annual Report 2023. In UN Environmental Programme. https://doi.org/10.59117/20.500.11822/44777

USEPA. (2021). Ecological Risk Assessment Guidance. U.S. Environmental Protection Agency. https://www.epa.gov/risk

Wang, J., & Aghajani Delavar, M. (2024). Modelling phytoremediation: Concepts, methods, challenges and perspectives. Soil and Environmental Health, 2(1), 100062. https://doi.org/10.1016/j.seh.2024.100062

Yemelyanov, V. V, Puzanskiy, R. K., & Shishova, M. F. (2023). Plant life with and without oxygen: A metabolomics approach. International Journal of Molecular Sciences, 24(22). https://doi.org/10.3390/ijms242216222

Yu, Y., Wang, Y.-C., Zhou, H., & Zhao, G.-F. (2013). Biomagnification of heavy metals in the aquatic food chain in Daning River of the Three Gorges Reservoir during initial impoundment. Journal of environment science, 34(10), 3847–3853.




DOI: https://doi.org/10.33387/bioedu.v8i1.9808

Refbacks

  • There are currently no refbacks.


Journal of Bioeducation
Biology Education Study Program | Faculty of Teacher Training and Education | Universitas Khairun
Jl. Bandara Sultan Baabullah Kelurahan Akehuda, Kota Ternate Utara, Maluku Utara 97728 Indonesia