CLASSIFICATION OF JAVANESE NGLEGENA SCRIPT USING COMPLEXVALUED NEURAL NETWORK

Adinda Aulia Rahmawati, Amri Muhaimin, Dwi Arman Prasetya

Abstract


Javanese script is one of the traditional scripts in Indonesia used by the Javanese people. The Javanese script used in Javanese spelling basically consists of 20 main characters (nglegena), namely from the Ha to Nga script. Javanese script has very high value, the uniqueness of the script is one thing that must be preserved. However, widespread use of Javanese script has declined as technology has developed. In this context, one of the problems that arises is the difficulty in automatically recognizing and classifying the Javanese Nglegena script. Therefore, the use of computational methods to automatically classify the Nglegena Javanese script is very important. This research compares 2 methods for classifying Javanese Nglegena script, namely Complex-Valued Neural Network (CVNN) and Convolutional Neural Network (CNN). This research aims to compare the best accuracy between CVNN and CNN. In this study, the Complex-Valued Neural Network method had a higher average accuracy, namely 96.332% and a loss of 0.1834. Meanwhile, the CNN method has an average accuracy of 93.72% and a loss of 0.4254. Artificial intelligence-based Javanese Nglegena script classification technology can help people to recognize the Javanese Nglegena script, especially in the fields of education and culture.

Full Text:

PDF

References


S. C. A. Pradhana, U. N. Wisesty, and F. Sthevanie, “Pengenalan Aksara Jawa dengan Menggunakan Metode Convolutional Neural Network,” e-Proceeding Eng., vol. 7, no. 1, pp. 2558–2567, 2020.

M. A. Rasyidi, T. Bariyah, Y. I. Riskajaya, and A. D. Septyani, “Classification of handwritten javanese script using random forest algorithm,” Bull. Electr. Eng. Informatics, vol. 10, no. 3, pp. 1308–1315, 2021, doi: 10.11591/eei.v10i3.3036.

T. Rahardjo, N. Degeng, and Y. Soepriyanto, “Pengembangan Multimedia Interaktif Mobile Learning Berbasis Anrdroid Aksara Jawa Kelas X Smk Negeri 5 Malang,” J. Kaji. Teknol. Pendidik., vol. 2, no. 3, pp. 195–202, 2019, doi: 10.17977/um038v2i32019p195.

I. G. S. M. Diyasa, A. Fauzi, M. Idhom, and A. Setiawan, “Multi-face Recognition for the Detection of Prisoners in Jail using a Modified Cascade Classifier and CNN,” J. Phys. Conf. Ser., vol. 1844, no. 1, 2021, doi: 10.1088/1742-6596/1844/1/012005.

F. M. Adenansyah, “Rancang Bangun Game Edukasi Belajar Aksara dan Tata Krama Bahasa Jawa untuk SD Kelas 4 Berbasis Android,” J. Manaj. Inform., vol. 10, no. 9, pp. 1–9, 2019.

C. Dian Ikawati Susilo and D. Indira, “Filosofi Hanacaraka Bahasa Jawa Suatu Kajian Etnolinguistik,” Kongr. Int. Masy. Linguist. Indones., pp. 30–34, 2022, doi: 10.51817/kimli.vi.17.

D. Fakhruddin, A. Sachari, and N. Haswanto, “Pengembangan Desain Informasi dan Pembelajaran Aksara Jawa melalui Media Website,” ANDHARUPA J. Desain Komun. Vis. Multimed., vol. 5, no. 01, pp. 1–23, 2019, doi: 10.33633/andharupa.v5i01.1990.

D. A. Prasetya, P. T. Nguyen, R. Faizullin, I. Iswanto, and E. F. Armay, “Resolving the shortest path problem using the haversine algorithm,” J. Crit. Rev., vol. 7, no. 1, pp. 62–64, 2020, doi: 10.22159/jcr.07.01.11.

R. Trabelsi, I. Jabri, F. Melgani, F. Smach, N. Conci, and A. Bouallegue, “Indoor object recognition in RGBD images with complex-valued neural networks for visually-impaired people,” Neurocomputing, vol. 330, pp. 94–103, 2019, doi: 10.1016/j.neucom.2018.11.032.

R. Novaliandy and A. R. Widiarti, “Klasifikasi Aksara Jawa Cetak Menggunakan Jaringan Syaraf Tiruan Backpropagation,” Pros. Semin. Nas. Ilmu …, pp. 307–312, 2022, [Online]. Available: https://mail.puterabatam.com/index.php/prosiding/article/view/5351

I. S. Hanindria and H. Hendry, “Pengklasifikasian Aksara Jawa Metode Convolutional Neural Network,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 3, pp. 2727–2737, 2022, [Online]. Available: https://jurnal.mdp.ac.id/index.php/jatisi/article/view/2177

J. A. Barrachina, C. Ren, G. Vieillard, C. Morisseau, and J.-P. Ovarlez, “Theory and Implementation of Complex-Valued Neural Networks,” no. June, 2023, [Online]. Available: http://arxiv.org/abs/2302.08286

J. Krzyston, R. Bhattacharjea, and A. Stark, “Complex-valued convolutions for modulation recognition using deep learning,” 2020 IEEE Int. Conf. Commun. Work. ICC Work. 2020 - Proc., 2020, doi: 10.1109/ICCWorkshops49005.2020.9145469.

T. Muhamad Hafiez, D. Iskandar, A. Wiranata S.K, and R. Fitri Boangmanalu, “Optimasi Klasifikasi Gambar Varietas Jenis Tomat dengan Data Augmentation dan Convolutional Neural Network,” Smart Comp Jurnalnya Orang Pint. Komput., vol. 11, no. 2, pp. 175–186, 2022, doi: 10.30591/smartcomp.v11i2.3524.

A. Muhaimin, D. D. Prastyo, and H. H. S. Lu, “Forecasting with recurrent neural network in intermittent demand data,” Proc. Conflu. 2021 11th Int. Conf. Cloud Comput. Data Sci. Eng., pp. 802–809, 2021, doi: 10.1109/Confluence51648.2021.9376880.

R. A. Pengestu, B. Rahmat, and F. T. Anggraeni, “Implementasi algoritma CNN untuk klasifikasi citra lahan dan perhitungan luas,” J. Inform. dan Sist. Inf., vol. 1, no. 1, pp. 166–174, 2020.




DOI: https://doi.org/10.33387/jiko.v7i1.7808

Refbacks

  • There are currently no refbacks.