COMPARISON OF DECISION TREE AND NAÏVE BAYES ALGORITHMS IN PREDICTING STUDENT GRADUATION AT YPK JUNIOR HIGH SCHOOL, NABIRE REGENCY

Kristia Yuliawan, Stevanus Murib

Abstract


This study aims to compare the accuracy of the Decision Tree C4.5 and Naive Bayes algorithms in predicting student graduation at YPK Immanuel Nabire Junior High School, Central Papua. Student data from the 2022 and 2023 school years were used as training data, whereas student data for the 2024 school year were used as testing data. Data collection methods included field studies, interviews with schools, and literature studies. The implementation of the algorithm is carried out using the Orange software, which simplifies the process of data visualization and analysis. Both algorithms are applied to data processed through stages of cleaning and normalization to ensure the quality and relevance of the data used. The results show that the Decision Tree C4.5 algorithm has a prediction accuracy of 90.91%, while the Naive Bayes algorithm has an accuracy of 63.64%. The C4.5 Decision Tree algorithm is superior in predicting student graduation compared to Naive Bayes, which means that the C4.5 Decision Tree is more effective in identifying students who are likely to pass or not pass. The implementation of the C4.5 Decision Tree algorithm also helps schools make better decisions to support students who require additional attention. The study concluded that the Decision Tree C4.5 algorithm is recommended for use in predicting student graduation because it provides higher accuracy. The results of this research can be used by schools to improve the efficiency of the graduation prediction process and develop more effective and efficient learning programs. Using the right algorithms, schools can be more proactive in identifying students who need additional support, which can reduce academic failure rates and improve the overall quality of education

Full Text:

PDF

References


. R. Haqmanullah Pambudi, B. Darma Setiawan, and Indriati, “Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 7, pp. 2637–2643, 2018, [Online]. Available: http://j-ptiik.ub.ac.id

. L. Yuningsih, I. R. Setiawan, and A. A. Sunarto, “Rancangan Aplikasi Prediksi Kelulusan Siswa Menggunakan Algoritma C4.5,” Progresif J. Ilm. Komput., vol. 16, no. 2, p. 121, 2020, doi: 10.35889/progresif.v16i2.517.

. F. Ali Ma, A. Pratama, I. Sholihin, and A. Rizki Rinaldi, “Penerapan Model Prediksi Menggunakan Algoritma C.45 Untuk Prediksi Kelulusan Siswa SMK Wahidin,” J. Data Sci. Inform., vol. 1, no. 1, pp. 16–20, 2021.

. Sulistio, “APLIKASI PREDIKSI KELULUSAN MAHASISWA DENGAN METODE LINEAR DISCRIMINANT ANALYSIS Sulistio PT Adicipta Inovasi Teknologi (AdIns) Jakarta,” vol. 1, pp. 58–67, 2017.

. A. F. A. Naibaho and A. Zahra, “Prediksi Kelulusan Siswa Sekolah Menengah Pertama Menggunakan Machine Learning,” J. Inform. dan Tek. Elektro Terap., vol. 11, no. 3, 2023, doi: 10.23960/jitet.v11i3.3056.

. I. Darmayanti, P. Subarkah, L. R. Anunggilarso, and J. Suhaman, “Prediksi Potensi Siswa Putus Sekolah Akibat Pandemi Covid-19 Menggunakan Algoritme K-Nearest Neighbor,” JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 230–238, 2021, doi: 10.23887/jstundiksha.v10i2.39151.

. C. N. Dengen, K. Kusrini, and E. T. Luthfi, “Implementasi Decision Tree Untuk Prediksi Kelulusan Mahasiswa Tepat Waktu,” Sisfotenika, vol. 10, no. 1, p. 1, 2020, doi: 10.30700/jst.v10i1.484.

. J. Alimancon Sijabat and Z. Zakaria, “Penerapan Data Mining Untuk Pengolahan Data Siswa Dengan Menggunakan Metode Decision Tree (Studi Kasus : Yayasan Perguruan Kristen Andreas,” Maj. Ilm., vol. 5, pp. 7–12, 2015, [Online]. Available: http://www.stmik.budidarma.ac.id

. L. Genisa and D. I. Mulyana, “Implementasi Penerapan Metode C4 . 5 dan Naïve Bayes Dalam Tingkat Kelulusan Akreditasi Lembaga PAUD Pada Badan Akreditasi Nasional,” vol. 5, pp. 1595–1604, 2021, doi: 10.30865/mib.v5i4.3267.

. J. K. Informatika, “KLASIFIKASI SISWA SMK BERPOTENSI PUTUS SEKOLAH MENGGUNAKAN ALGORITMA DECISION TREE , SUPPORT VECTOR MACHINE DAN NAIVE BAYES,” vol. VII, no. 2, pp. 85–90, 2019.

. I. Mulia and M. Muanas, “Model Prediksi Kelulusan Mahasiswa Menggunakan Decision Tree C4.5 dan Software Weka,” JAS-PT (Jurnal Anal. Sist. Pendidik. Tinggi Indones., vol. 5, no. 1, p. 71, 2021, doi: 10.36339/jaspt.v5i1.417.

. U. I. N. Ar-raniry, F. Tarbiyah, D. A. N. Keguruan, P. Studi, and P. Teknologi, “PENGGUNAAN METODE NAIVES BAYES UNTUK SKRIPSI Diajukan Oleh,” 2023.

. F. Sinlae and A. Muhajirin, “ANALISIS PERBANDINGAN ALGORITMA NAÏVE BAYES DAN DECISION TREE ID3 UNTUK MEMPREDIKSI PRODUKTIFITAS MESIN,” pp. 1–10.

. A. P. Permana, K. Ainiyah, and K. F. H. Holle, “Analisis Perbandingan Algoritma Decision Tree, kNN, dan Naive Bayes untuk Prediksi Kesuksesan Start-up,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 6, no. 3, pp. 178–188, 2021, doi: 10.14421/jiska.2021.6.3.178-188.

. A. Romadhona, Suprapedi, and H. Himawan, “Prediksi Kelulusan Mahasiswa Tepat Waktu Berdasarkan Usia, Jenis Kelamin, dan Indeks Prestasi Menggunakan Algoritma Decision Tree,” J. Teknol. Inf., vol. 13, no. 1, pp. 69–83, 2017, [Online]. Available: http://research.

. S. Sumarlin and D. Anggraini, “Implementasi K-Nearest Neighbord Pada Rapidminer Untuk Prediksi Kelulusan Mahasiswa,” High Educ. Organ. Arch. Qual. J. Teknol. Inf., vol. 10, no. 1, pp. 35–41, 2018, doi: 10.52972/hoaq.vol10no1.p35-41.

. C. Nandari Dengen, E. Taufiq Luthfi, and Khusrini, “Implementation of Decision Tree for Prediction of Student Graduation On Time,” Sisfotenika, vol. 10, no. 1, pp. 1–11, 2020.




DOI: https://doi.org/10.33387/jiko.v7i2.8506

Refbacks

  • There are currently no refbacks.
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor