APPLICATION OF SUPPORT VECTOR MACHINE ALGORITHM FOR STUDENTS' FINAL ASSIGNMENT STRESS CLASSIFICATION

Pandu Wicaksono, Sriani Sriani

Abstract


In the context of higher education, the final assignment represents the last step in a student's academic journey, a period where students are particularly susceptible to stress. Implementing machine learning techniques, such as the Support Vector Machine (SVM) method, presents a promising approach for early classification of students' stress levels and offers tailored stress management recommendations. This study adopts a quantitative research approach, aimed at classifying student stress levels using the SVM algorithm known for its high prediction accuracy. The research methodology encompasses stages like data collection, preprocessing, classification, results analysis, and accuracy evaluation. In this research, 80% of the dataset is allocated for training, while the remaining 20% is reserved for testing. The study finds that the most effective SVM kernel function is the Radial Basis Function (RBF) with a γ parameter value of 1, which, when applied using RapidMiner, achieves an accuracy of 93.33%. This research is anticipated to make a significant contribution to the development of early stress detection systems for students and offer valuable insights into leveraging machine learning technology for mental health applications. The findings demonstrate that the SVM method with the RBF kernel provides highly accurate classification results, making it a useful tool for effectively identifying student stress level

Full Text:

PDF

References


U. Rusmawan, Teknik penulisan tugas akhir dan skripsi pemrograman. Elex media komputindo, 2019.

M. Wibowo and M. R. F. Djafar, “Perbandingan Metode Klasifikasi Untuk Deteksi Stress Pada Mahasiswa di Perguruan Tinggi,” Jurnal Media Informatika Budidarma, vol. 7, no. 1, pp. 153–159, 2023.

T. M. Wijiasih, R. N. S. Amriza, and D. A. Prabowo, “The Classification of Anxiety, Depression, and Stress on Facebook Users Using the Support Vector Machine,” JISA(Jurnal Informatika dan Sains), vol. 5, no. 1, pp. 75–79, 2022, doi: 10.31326/jisa.v5i1.1273.

S. B. Seto, M. T. S. Wondo, and M. F. Mei, “Hubungan Motivasi Terhadap Tingkat Stress Mahasiswa Dalam Menulis Tugas Akhir,” Jurnal Basicedu, vol. 4, no. 3, pp. 733–739, 2020.

S. Aulia and R. U. Panjaitan, “Kesejahteraan psikologis dan tingkat stres pada mahasiswa tingkat akhir,” Jurnal keperawatan jiwa, vol. 7, no. 2, p. 127, 2019.

M. Kang, S. Shin, G. Zhang, J. Jung, and Y. T. Kim, “Mental stress classification based on a support vector machine and naive Bayes using electrocardiogram signals,” Sensors, vol. 21, no. 23, p. 7916, 2021.

S. Aulia and R. U. Panjaitan, “Kesejahteraan psikologis dan tingkat stres pada mahasiswa tingkat akhir,” Jurnal keperawatan jiwa, vol. 7, no. 2, p. 127, 2019.

N. Khatape, P. Lad, S. Pawar, T. Sonawane, and K. R. Pathak, “Stress detection system using the SVM algorithm,” Journal of Advances in Computational Intelligence Theory, vol. 3, no. 1, 2021.

S. Muawanah, U. Muzayanah, M. G. R. Pandin, M. D. S. Alam, and J. P. N. Trisnaningtyas, “Stress and Coping Strategies of Madrasah’s Teachers on Applying Distance Learning During COVID-19 Pandemic in Indonesia,” Qubahan Academic Journal, vol. 3, no. 4, pp. 206–218, 2023, doi: 10.48161/Issn.2709-8206.

A. S. Rahayu, A. Fauzi, and R. Rahmat, “Komparasi Algoritma Naïve Bayes Dan Support Vector Machine (SVM) Pada Analisis Sentimen Spotify,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 349, 2022, doi: 10.30865/json.v4i2.5398.

B. P. Tomasouw and F. Y. Rumlawang, “Penerapan Metode SVM Untuk Deteksi Dini Penyakit Stroke (Studi Kasus: RSUD Dr. H. Ishak Umarella Maluku Tengah dan RS Sumber Hidup-GPM),” Tensor: Pure and Applied Mathematics Journal, vol. 4, no. 1, pp. 37–44, 2023.

B. Sugara and A. Subekti, “Penerapan Support Vector Machine (Svm) Pada Small Dataset Untuk Deteksi Dini Gangguan Autisme,” Jurnal Pilar Nusa Mandiri, vol. 15, no. 2, pp. 177–182, 2019.

F. Pradana, F. A. Bachtiar, and M. Zulfikarrahman, “Implementasi Support Vector Machine untuk Deteksi Stres pada Pengguna E-Learning,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 4, pp. 763–768, 2021.

I. Zulfahmi, H. Syahputra, S. I. Naibaho, M. A. Maulana, and E. P. Sinaga, “Perbandingan Algoritma Support Vector Machine (SVM) dan Decision Tree Untuk Deteksi Tingkat Depresi Mahasiswa,” BINA INSANI ICT JOURNAL, vol. 10, no. 1, pp. 52–61, 2023.

R. Damasela, B. P. Tomasouw, and Z. A. Leleury, “Penerapan Metode Support Vector Machine (SVM) Untuk Mendeteksi Penyalahgunaan Narkoba,” PARAMETER: Jurnal Matematika, Statistika Dan Terapannya, vol. 1, no. 2, pp. 111–122, 2022.




DOI: https://doi.org/10.33387/jiko.v7i2.8618

Refbacks

  • There are currently no refbacks.
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor